Príklady hľadania derivácie komplexnej funkcie. Derivácia komplexnej funkcie

Je uvedený dôkaz odvodeného vzorca komplexná funkcia. Podrobne sa zvažujú prípady, keď komplexná funkcia závisí od jednej alebo dvoch premenných. Tento prípad sa zovšeobecňuje akékoľvek číslo premenných.

Tu uvádzame odvodenie nasledujúcich vzorcov pre deriváciu komplexnej funkcie.
Ak, potom
.
Ak, potom
.
Ak, potom
.

Derivácia komplexnej funkcie od jednej premennej

Nech je funkcia premennej x reprezentovaná ako komplexná funkcia v nasledujúcom tvare:
,
kde sú nejaké funkcie. Funkcia je diferencovateľná pre nejakú hodnotu premennej x.
Funkcia je diferencovateľná na hodnote premennej.
(1) .

Potom je komplexná (zložená) funkcia diferencovateľná v bode x a jej derivácia je určená vzorcom:
;
.

Vzorec (1) možno napísať aj takto:

Dôkaz
;
.
Uveďme si nasledujúci zápis.

Tu je funkcia premenných a , je funkcia premenných a .
;
.

Ale vynecháme argumenty týchto funkcií, aby sme nezaťažili výpočty.
.
Keďže funkcie a sú diferencovateľné v bodoch x a , potom v týchto bodoch existujú deriváty týchto funkcií, ktoré sú nasledujúcimi limitmi:
.
Zvážte nasledujúcu funkciu:
.

Pre pevnú hodnotu premennej u je funkciou .
.
Zvážte nasledujúcu funkciu:
.

To je zrejmé

.

Potom

Keďže funkcia je v bode diferencovateľná funkcia, v tomto bode je spojitá. Preto

Teraz nájdeme derivát.
,
Vzorec je osvedčený.
.
Dôsledok

Ak funkcia premennej x môže byť reprezentovaná ako komplexná funkcia komplexnej funkcie
potom je jeho derivácia určená vzorcom
.
Tu a tam sú niektoré diferencovateľné funkcie.
.
Aby sme dokázali tento vzorec, sekvenčne vypočítame deriváciu pomocou pravidla na derivovanie komplexnej funkcie.
.
Tu a tam sú niektoré diferencovateľné funkcie.
.

Zvážte komplexnú funkciu

Jeho derivát Zvážte pôvodnú funkciu.

Derivácia komplexnej funkcie od dvoch premenných
,
Teraz nech komplexná funkcia závisí od niekoľkých premenných. Najprv sa pozrime na
prípad komplexnej funkcie dvoch premenných
- funkcia dvoch premenných, diferencovateľných v bode , .
(2) .

Vzorec (1) možno napísať aj takto:

Potom je komplexná funkcia definovaná v určitom okolí bodu a má deriváciu, ktorá je určená vzorcom:
;
.
Keďže funkcie a sú v bode diferencovateľné, sú definované v určitom okolí tohto bodu, sú v bode spojité a v bode existujú ich derivácie, čo sú nasledujúce limity:
;
.
Tu
;
.

Vzhľadom na kontinuitu týchto funkcií v určitom bode máme:
(3) .
Keďže funkcie a sú v bode diferencovateľné, sú definované v určitom okolí tohto bodu, sú v bode spojité a v bode existujú ich derivácie, čo sú nasledujúce limity:

Keďže funkcia je v bode diferencovateľná, je definovaná v určitom okolí tohto bodu, v tomto bode je spojitá a jej prírastok možno zapísať v nasledujúcom tvare:
;

- prírastok funkcie, keď sú jej argumenty zvýšené o hodnoty a ;
- parciálne derivácie funkcie vzhľadom na premenné a .
;
.
Pre pevné hodnoty a a sú funkciami premenných a .
;
.

Majú tendenciu nulovať sa a:

. :
.
Odvtedy a potom



.

Potom

Prírastok funkcie:

Nahradíme (3):

Derivácia komplexnej funkcie od viacerých premenných Vyššie uvedený záver možno ľahko zovšeobecniť na prípad, keď počet premenných komplexnej funkcie je viac ako dve. Napríklad, ak f je
,
Teraz nech komplexná funkcia závisí od niekoľkých premenných. Najprv sa pozrime na
funkcia troch premenných
, To
a existujú diferencovateľné funkcie pre nejakú hodnotu premennej x;
(4)
.
- diferencovateľná funkcia troch premenných v bode , , .
; ; ,
Potom z definície diferencovateľnosti funkcie máme:
;
;
.

Pretože vďaka kontinuite,
.

To Delením (4) a prekročením limitu dostaneme: A na záver pouvažujme .
najviac
,
Teraz nech komplexná funkcia závisí od niekoľkých premenných. Najprv sa pozrime na
všeobecný prípad
Nech je funkcia premennej x reprezentovaná ako komplexná funkcia n premenných v nasledujúcom tvare:
, , ... , .
Zvážte nasledujúcu funkciu:
.

existujú diferencovateľné funkcie pre nejakú hodnotu premennej x;

- diferencovateľná funkcia n premenných v bode

Vstupná úroveň

Derivácia funkcie. The Ultimate Guide (2019)

Keď sa po takejto ceste pohybujeme vpred, pohybujeme sa aj nahor alebo nadol. Môžeme tiež povedať: keď sa argument zmení (pohyb po vodorovnej osi), zmení sa hodnota funkcie (pohyb po zvislej osi). Teraz sa zamyslime nad tým, ako určiť „strmosť“ našej cesty? Aká by to mohla byť hodnota? Je to veľmi jednoduché: ako veľmi sa zmení výška pri pohybe vpred o určitú vzdialenosť. V skutočnosti na rôznych úsekoch cesty, keď sa posunieme vpred (pozdĺž osi x) o jeden kilometer, budeme stúpať alebo klesať o iný počet metrov v porovnaní s hladinou mora (pozdĺž osi y).

Označme pokrok (čítaj „delta x“).

Grécke písmeno (delta) sa bežne používa v matematike ako predpona s významom „zmena“. To je - to je zmena množstva, - zmena; čo je potom? Správne, zmena veľkosti.

Dôležité: výraz je jeden celok, jedna premenná. Nikdy neoddeľujte „delta“ od „x“ alebo akéhokoľvek iného písmena!

To je napríklad .

Takže sme sa posunuli vpred, horizontálne, o. Ak porovnáme čiaru cesty s grafom funkcie, ako potom označíme stúpanie? Určite,. To znamená, že keď napredujeme, stúpame vyššie.

Hodnota sa dá ľahko vypočítať: ak sme na začiatku boli vo výške a po presťahovaní sme sa ocitli vo výške, potom. Ak je koncový bod nižšie ako začiatočný bod, bude záporný – to znamená, že nestúpame, ale klesáme.

Vráťme sa k „strmosti“: toto je hodnota, ktorá ukazuje, o koľko (strmšie) sa výška zväčší pri pohybe dopredu o jednu jednotku vzdialenosti:

Predpokladajme, že na niektorom úseku cesty sa pri posune vpred o kilometer cesta zdvihne o kilometer. Potom je sklon na tomto mieste rovnaký. A ak cesta pri pohybe vpred o m klesla o km? Potom je sklon rovnaký.

Teraz sa pozrime na vrchol kopca. Ak si vezmete začiatok úseku pol kilometra pred vrcholom a koniec pol kilometra za ním, môžete vidieť, že výška je takmer rovnaká.

IN skutočný život Meranie vzdialeností s presnosťou na milimeter je viac než dosť. Ale matematici sa vždy snažia o dokonalosť. Preto bol vynájdený koncept nekonečne malý, to znamená, že absolútna hodnota je menšia ako akékoľvek číslo, ktoré vieme pomenovať. Napríklad poviete: jeden bilión! O koľko menej? A toto číslo vydelíte - a bude ešte menej. A tak ďalej. Ak chceme napísať, že množstvo je nekonečne malé, napíšeme takto: (čítame „x má tendenciu k nule“). Je veľmi dôležité pochopiť že toto číslo nie je nula! Ale veľmi blízko k tomu. To znamená, že ním môžete deliť.

Pojem opačný k nekonečne malému je nekonečne veľký (). Pravdepodobne ste sa s tým už stretli, keď ste pracovali na nerovnostiach: toto číslo je modulo väčšie ako akékoľvek číslo, ktoré si dokážete predstaviť. Ak prídete na najväčšie možné číslo, jednoducho ho vynásobte dvomi a dostanete ešte väčšie číslo. A stále nekonečno navyšečo sa stane. V skutočnosti sú nekonečne veľké a nekonečne malé navzájom inverzné, teda at, a naopak: at.

Teraz sa vráťme na našu cestu. Ideálne vypočítaný sklon je sklon vypočítaný pre nekonečne malý segment cesty, to znamená:

Podotýkam, že pri nekonečne malom posune bude aj zmena výšky nekonečne malá. Dovoľte mi však pripomenúť, že infinitezimálny neznamená rovný nule. Ak navzájom delíte nekonečne malé čísla, dostanete úplne obyčajné číslo, napríklad . To znamená, že jedna malá hodnota môže byť presne krát väčšia ako druhá.

Načo to všetko je? Cesta, strmosť... Nejdeme na automobilovú rely, ale učíme matematiku. A v matematike je všetko úplne rovnaké, len sa inak volá.

Koncept derivátu

Derivácia funkcie je pomer prírastku funkcie k prírastku argumentu pre nekonečne malý prírastok argumentu.

Postupne v matematike nazývajú zmena. Rozsah, v akom sa argument () mení pri pohybe pozdĺž osi, sa nazýva prírastok argumentov a je označené ako veľmi sa zmenila funkcia (výška) pri pohybe vpred pozdĺž osi o vzdialenosť prírastok funkcie a je určený.

Derivácia funkcie je teda pomer k kedy. Deriváciu označujeme rovnakým písmenom ako funkcia, len s prvočíslom vpravo hore: alebo jednoducho. Takže napíšme odvodený vzorec pomocou týchto zápisov:

Rovnako ako v analógii s cestou, aj tu, keď sa funkcia zvyšuje, derivácia je kladná, a keď klesá, je záporná.

Môže sa derivácia rovnať nule? určite. Napríklad, ak ideme po rovnej vodorovnej ceste, strmosť je nulová. A je pravda, že výška sa vôbec nemení. Tak je to aj s deriváciou: derivácia konštantnej funkcie (konštanta) sa rovná nule:

keďže prírastok takejto funkcie je rovný nule pre ľubovoľnú.

Spomeňme si na príklad z kopca. Ukázalo sa, že je možné usporiadať konce segmentu pozdĺž rôzne strany zhora, takže výška na koncoch je rovnaká, to znamená, že segment je rovnobežný s osou:

Ale veľké segmenty sú znakom nepresného merania. Zdvihneme náš segment nahor rovnobežne so sebou, potom sa jeho dĺžka zníži.

Nakoniec, keď sme nekonečne blízko vrcholu, dĺžka segmentu bude nekonečne malá. Zároveň však zostal rovnobežný s osou, to znamená, že výškový rozdiel na jej koncoch je rovný nule (nemá tendenciu, ale je rovný). Takže derivát

Dá sa to chápať takto: keď stojíme na samom vrchole, malý posun doľava alebo doprava zmení našu výšku zanedbateľne.

Existuje aj čisto algebraické vysvetlenie: vľavo od vrcholu sa funkcia zvyšuje a vpravo klesá. Ako sme už skôr zistili, keď funkcia rastie, derivácia je kladná, a keď klesá, je záporná. Mení sa ale plynulo, bez skokov (keďže cesta nikde prudko nemení sklon). Preto medzi negatívnymi a kladné hodnoty tam určite musí byť. Bude to tam, kde sa funkcia ani nezväčšuje, ani neznižuje – v bode vrcholu.

To isté platí pre žľab (oblasť, kde funkcia vľavo klesá a vpravo sa zvyšuje):

Trochu viac o prírastkoch.

Takže zmeníme argument na veľkosť. Z akej hodnoty sa meníme? Čo sa to (argument) stalo teraz? Môžeme si vybrať ľubovoľný bod a teraz z neho budeme tancovať.

Zvážte bod so súradnicou. Hodnota funkcie v ňom je rovnaká. Potom urobíme rovnaký prírastok: zväčšíme súradnicu o. Aký je teraz argument? Veľmi jednoduché: . Akú hodnotu má funkcia teraz? Kam smeruje argument, tam je aj funkcia: . A čo prírastok funkcie? Nič nové: toto je stále množstvo, o ktoré sa funkcia zmenila:

Precvičte si nájdenie prírastkov:

  1. Nájdite prírastok funkcie v bode, v ktorom je prírastok argumentu rovný.
  2. To isté platí pre funkciu v bode.

Riešenia:

IN rôzne body s rovnakým prírastkom argumentu bude prírastok funkcie iný. To znamená, že derivácia v každom bode je iná (rozoberali sme to úplne na začiatku – strmosť cesty je v rôznych bodoch rôzna). Preto, keď píšeme derivát, musíme uviesť, v ktorom bode:

Funkcia napájania.

Mocninná funkcia je funkcia, ktorej argument je do určitej miery (logický, však?).

Navyše - v akomkoľvek rozsahu: .

Najjednoduchší prípad je, keď je exponent:

Nájdite jeho derivát v bode. Pripomeňme si definíciu derivátu:

Takže argument sa mení z na. Aký je prírastok funkcie?

Prírastok je toto. Ale funkcia v ktoromkoľvek bode sa rovná jej argumentu. Preto:

Derivát sa rovná:

Derivácia sa rovná:

b) Teraz zvážte kvadratickú funkciu (): .

Teraz si to pripomeňme. To znamená, že hodnotu prírastku možno zanedbať, pretože je nekonečne malá, a preto je na pozadí druhého výrazu nevýznamná:

Tak sme prišli s ďalším pravidlom:

c) Pokračujeme v logickom rade: .

Tento výraz je možné zjednodušiť rôznymi spôsobmi: otvorte prvú zátvorku pomocou vzorca na skrátené násobenie kocky súčtu alebo celý výraz rozložte pomocou vzorca rozdielu kociek. Skúste to urobiť sami pomocou ktorejkoľvek z navrhovaných metód.

Takže som dostal nasledovné:

A opäť si to pripomeňme. To znamená, že môžeme zanedbať všetky výrazy obsahujúce:

Dostávame: .

d) Podobné pravidlá možno získať pre veľké právomoci:

e) Ukazuje sa, že toto pravidlo možno zovšeobecniť pre mocninnú funkciu s ľubovoľným exponentom, dokonca ani nie celým číslom:

(2)

Pravidlo možno formulovať slovami: „stupeň sa posunie dopredu ako koeficient a potom sa zníži o .

Toto pravidlo si preukážeme neskôr (takmer na samom konci). Teraz sa pozrime na niekoľko príkladov. Nájdite deriváciu funkcií:

  1. (dvoma spôsobmi: vzorcom a pomocou definície derivácie - výpočtom prírastku funkcie);
  1. . Verte alebo nie, toto je mocenská funkcia. Ak máte otázky typu „Ako to je? Kde je titul?“, zapamätajte si tému „“!
    Áno, áno, koreň je tiež stupeň, len zlomkový: .
    To znamená, že naša druhá odmocnina je len mocnina s exponentom:
    .
    Hľadáme derivát pomocou nedávno naučeného vzorca:

    Ak to bude v tomto bode opäť nejasné, zopakujte tému „“!!! (asi stupeň so záporným exponentom)

  2. . Teraz exponent:

    A teraz cez definíciu (ešte ste zabudli?):
    ;
    .
    Teraz, ako obvykle, zanedbávame výraz obsahujúci:
    .

  3. . Kombinácia predchádzajúcich prípadov: .

Goniometrické funkcie.

Tu použijeme jeden fakt z vyššej matematiky:

S výrazom.

Dôkaz sa naučíte v prvom ročníku inštitútu (a aby ste sa tam dostali, musíte dobre zložiť jednotnú štátnu skúšku). Teraz to ukážem graficky:

Vidíme, že keď funkcia neexistuje - bod na grafe je vyrezaný. Ale čím bližšie k hodnote, tým bližšie je funkcia k tomuto „cieľu“.

Toto pravidlo môžete navyše skontrolovať pomocou kalkulačky. Áno, áno, nehanbite sa, vezmite si kalkulačku, ešte nie sme na Jednotnej štátnej skúške.

Tak skúsme: ;

Nezabudnite si prepnúť kalkulačku do režimu Radians!

atď. Vidíme, že čím je menší, tým je hodnota pomeru bližšie.

a) Zvážte funkciu. Ako obvykle, nájdime jeho prírastok:

Premeňme rozdiel sínusov na produkt. Na tento účel používame vzorec (zapamätajte si tému „“): .

Teraz derivát:

Urobme náhradu: . Potom pre nekonečne malé je tiež nekonečne malé: . Výraz pre má tvar:

A teraz si to pamätáme s výrazom. A tiež, čo ak možno v súčte (teda at) zanedbať nekonečne malé množstvo.

Takže dostaneme nasledujúce pravidlo: derivácia sínusu sa rovná kosínusu:

Ide o základné („tabuľkové“) deriváty. Tu sú v jednom zozname:

Neskôr k nim pridáme niekoľko ďalších, no tieto sú najdôležitejšie, keďže sa používajú najčastejšie.

Prax:

  1. Nájdite deriváciu funkcie v bode;
  2. Nájdite deriváciu funkcie.

Riešenia:

  1. Najprv nájdime derivát v celkový pohľad a potom nahraďte jeho hodnotu:
    ;
    .
  2. Tu máme niečo podobné výkonová funkcia. Skúsme ju priviesť
    normálny pohľad:
    .
    Skvelé, teraz môžete použiť vzorec:
    .
    .
  3. . Eeeeeee.....Toto je čo????

Dobre, máte pravdu, zatiaľ nevieme, ako takéto deriváty nájsť. Tu máme kombináciu niekoľkých typov funkcií. Ak chcete s nimi pracovať, musíte sa naučiť niekoľko ďalších pravidiel:

Exponent a prirodzený logaritmus.

V matematike existuje funkcia, ktorej derivácia pre ľubovoľnú hodnotu sa zároveň rovná hodnote samotnej funkcie. Nazýva sa „exponent“ a je to exponenciálna funkcia

Základom tejto funkcie je konštanta – je nekonečná desiatkový, teda iracionálne číslo (ako napr.). Nazýva sa „Eulerovo číslo“, a preto je označené písmenom.

Takže, pravidlo:

Veľmi ľahko zapamätateľné.

No, nechoďme ďaleko, okamžite zvážime inverznú funkciu. Ktorá funkcia je inverzná exponenciálna funkcia? Logaritmus:

V našom prípade je základom číslo:

Takýto logaritmus (teda logaritmus so základom) sa nazýva „prirodzený“ a používame preň špeciálny zápis: namiesto toho píšeme.

Čomu sa to rovná? Samozrejme.

Derivát z prirodzený logaritmus tiež veľmi jednoduché:

Príklady:

  1. Nájdite deriváciu funkcie.
  2. Aká je derivácia funkcie?

Odpovede: Exponenciálny a prirodzený logaritmus sú z derivačnej perspektívy jedinečne jednoduché funkcie. Exponenciálne a logaritmické funkcie s akoukoľvek inou bázou budú mať inú deriváciu, ktorú budeme analyzovať neskôr, keď si prejdeme pravidlá diferenciácie.

Pravidlá diferenciácie

Pravidlá čoho? Opäť nový termín, opäť?!...

Diferenciácia je proces hľadania derivátu.

To je všetko. Ako inak môžete nazvať tento proces jedným slovom? Nie derivácia... Matematici nazývajú diferenciál rovnakým prírastkom funkcie at. Tento výraz pochádza z latinského differentia – rozdiel. Tu.

Pri odvodzovaní všetkých týchto pravidiel použijeme dve funkcie, napríklad a. Budeme tiež potrebovať vzorce pre ich prírastky:

Celkovo existuje 5 pravidiel.

Konštanta je vyňatá z derivačného znamienka.

Ak - nejaké konštantné číslo(konštantný), teda.

Je zrejmé, že toto pravidlo funguje aj pre rozdiel: .

Poďme to dokázať. Nech je to tak, alebo jednoduchšie.

Príklady.

Nájdite derivácie funkcií:

  1. v bode;
  2. v bode;
  3. v bode;
  4. v bode.

Riešenia:

  1. (derivát je vo všetkých bodoch rovnaký, pretože toto lineárna funkcia, pamätáš?);

Derivát produktu

Tu je všetko podobné: predstavme si novú funkciu a nájdime jej prírastok:

odvodený:

Príklady:

  1. Nájdite derivácie funkcií a;
  2. Nájdite deriváciu funkcie v bode.

Riešenia:

Derivácia exponenciálnej funkcie

Teraz sú vaše znalosti dostatočné na to, aby ste sa naučili nájsť deriváciu akejkoľvek exponenciálnej funkcie, a nielen exponentov (zabudli ste, čo to je?).

Takže, kde je nejaké číslo.

Deriváciu funkcie už poznáme, takže skúsme našu funkciu zredukovať na nový základ:

Na to použijeme jednoduché pravidlo: . potom:

No podarilo sa. Teraz skúste nájsť deriváciu a nezabudnite, že táto funkcia je zložitá.

Podarilo sa to?

Tu sa presvedčte sami:

Ukázalo sa, že vzorec je veľmi podobný derivátu exponentu: ako to bolo, zostáva rovnaký, objavil sa iba faktor, ktorý je len číslom, ale nie premennou.

Príklady:
Nájdite derivácie funkcií:

Odpovede:

Toto je len číslo, ktoré sa bez kalkulačky nedá vypočítať, teda už sa nedá zapísať v jednoduchej forme. Preto ho v odpovedi necháme v tejto podobe.

Derivácia logaritmickej funkcie

Tu je to podobné: deriváciu prirodzeného logaritmu už poznáte:

Preto nájsť ľubovoľný logaritmus s inou základňou, napríklad:

Tento logaritmus musíme zredukovať na základňu. Ako zmeníte základ logaritmu? Dúfam, že si pamätáte tento vzorec:

Len teraz namiesto toho napíšeme:

Menovateľ je jednoducho konštanta (konštantné číslo, bez premennej). Derivát sa získa veľmi jednoducho:

Deriváty exponenciálnych a logaritmických funkcií sa v jednotnej štátnej skúške takmer nikdy nenachádzajú, ale nebude zbytočné ich poznať.

Derivácia komplexnej funkcie.

Čo je to „komplexná funkcia“? Nie, toto nie je logaritmus ani arkustangens. Tieto funkcie môžu byť ťažko pochopiteľné (hoci ak sa vám zdá logaritmus ťažký, prečítajte si tému „Logaritmy“ a budete v poriadku), ale z matematického hľadiska slovo „komplexný“ neznamená „ťažký“.

Predstavte si malý dopravný pás: dvaja ľudia sedia a robia nejaké akcie s nejakými predmetmi. Napríklad prvý zabalí čokoládovú tyčinku do obalu a druhý ju previaže stuhou. Výsledkom je zložený objekt: čokoládová tyčinka zabalená a previazaná stuhou. Ak chcete zjesť čokoládovú tyčinku, musíte vykonať opačné kroky v opačnom poradí.

Vytvorme podobný matematický reťazec: najprv nájdeme kosínus čísla a potom odmocnime výsledné číslo. Takže dostaneme číslo (čokoláda), nájdem jeho kosínus (obal) a potom utvoríte štvorec, čo som dostal (previažte to stuhou). čo sa stalo? Funkcia. Toto je príklad komplexnej funkcie: keď na zistenie jej hodnoty vykonáme prvú akciu priamo s premennou a potom druhú akciu s tým, čo vyplynulo z prvej.

Rovnaké kroky môžeme jednoducho urobiť v opačnom poradí: najprv to odmocni a ja potom hľadám kosínus výsledného čísla: . Je ľahké uhádnuť, že výsledok bude takmer vždy iný. Dôležitá vlastnosť komplexné funkcie: keď sa zmení poradie akcií, zmení sa funkcia.

Inými slovami, komplexná funkcia je funkcia, ktorej argumentom je iná funkcia: .

Pre prvý príklad, .

Druhý príklad: (to isté). .

Akcia, ktorú urobíme ako posledná, bude vyvolaná „vonkajšiu“ funkciu, a akcia vykonaná ako prvá - podľa toho „vnútorná“ funkcia(sú to neformálne názvy, používam ich len na vysvetlenie látky jednoduchým jazykom).

Skúste sami určiť, ktorá funkcia je externá a ktorá interná:

Odpovede: Oddelenie vnútorných a vonkajších funkcií je veľmi podobné zmene premenných: napríklad vo funkcii

  1. Akú akciu vykonáme ako prvú? Najprv vypočítame sínus a až potom ho dáme na kocku. To znamená, že ide o vnútornú funkciu, ale vonkajšiu.
    A pôvodnou funkciou je ich zloženie: .
  2. Vnútorné: ; vonkajší: .
    Vyšetrenie: .
  3. Vnútorné: ; vonkajší: .
    Vyšetrenie: .
  4. Vnútorné: ; vonkajší: .
    Vyšetrenie: .
  5. Vnútorné: ; vonkajší: .
    Vyšetrenie: .

Zmeníme premenné a dostaneme funkciu.

Teraz vyberieme našu čokoládovú tyčinku a budeme hľadať derivát. Postup je vždy opačný: najprv hľadáme deriváciu vonkajšej funkcie, potom výsledok vynásobíme deriváciou vnútornej funkcie. Vo vzťahu k pôvodnému príkladu to vyzerá takto:

Ďalší príklad:

Takže konečne sformulujme oficiálne pravidlo:

Algoritmus na nájdenie derivácie komplexnej funkcie:

Zdá sa to jednoduché, však?

Pozrime sa na príklady:

Riešenia:

1) Interné: ;

Vonkajšie: ;

2) Interné: ;

(Len to teraz neskúšajte odstrihnúť! Spod kosínusu nič nevychádza, pamätáte?)

3) Interné: ;

Vonkajšie: ;

Hneď je jasné, že ide o trojúrovňovú komplexnú funkciu: veď toto je už sama o sebe zložitá funkcia a extrahujeme z nej aj koreň, čiže vykonáme tretiu akciu (čokoládu vložíme do zavinovačkou a so stuhou v kufríku). Nie je však dôvod na strach: túto funkciu budeme stále „rozbaľovať“ v rovnakom poradí ako obvykle: od konca.

To znamená, že najprv diferencujeme koreň, potom kosínus a až potom výraz v zátvorkách. A potom to všetko vynásobíme.

V takýchto prípadoch je vhodné akcie očíslovať. To znamená, predstavme si, čo vieme. V akom poradí vykonáme akcie na výpočet hodnoty tohto výrazu? Pozrime sa na príklad:

Čím neskôr sa akcia vykoná, tým „externejšia“ bude príslušná funkcia. Postupnosť akcií je rovnaká ako predtým:

Tu je hniezdenie vo všeobecnosti 4-úrovňové. Poďme určiť postup.

1. Radikálny prejav. .

2. Koreň. .

3. Sínus. .

4. Štvorec. .

5. Daj to všetko dokopy:

DERIVÁT. STRUČNE O HLAVNÝCH VECIACH

Derivácia funkcie- pomer prírastku funkcie k prírastku argumentu pre nekonečne malý prírastok argumentu:

Základné deriváty:

Pravidlá rozlišovania:

Konštanta je vyňatá z derivačného znamienka:

Derivát súčtu:

Derivát produktu:

Derivát kvocientu:

Derivácia komplexnej funkcie:

Algoritmus na nájdenie derivácie komplexnej funkcie:

  1. Definujeme „internú“ funkciu a nájdeme jej deriváciu.
  2. Definujeme „vonkajšiu“ funkciu a nájdeme jej deriváciu.
  3. Výsledky prvého a druhého bodu vynásobíme.

Definícia. Nech je funkcia \(y = f(x) \) definovaná v určitom intervale obsahujúcom bod \(x_0\) v sebe. Dajme argumentu prírastok \(\Delta x \) tak, aby neopustil tento interval. Nájdeme zodpovedajúci prírastok funkcie \(\Delta y \) (pri pohybe z bodu \(x_0 \) do bodu \(x_0 + \Delta x \)) a zostavíme vzťah \(\frac(\Delta y)(\Delta x) \). Ak existuje limit pre tento pomer na \(\Delta x \rightarrow 0\), potom sa zadaný limit nazýva derivácia funkcie\(y=f(x) \) v bode \(x_0 \) a označte \(f"(x_0) \).

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Symbol y sa často používa na označenie derivácie. Všimnite si, že y" = f(x) je nová funkcia, ale prirodzene súvisí s funkciou y = f(x), definovanou vo všetkých bodoch x, v ktorých existuje vyššie uvedená limita. Táto funkcia sa volá takto: derivácia funkcie y = f(x).

Geometrický význam derivácie je nasledovný. Ak je možné nakresliť dotyčnicu ku grafu funkcie y = f(x) v bode s os x=a, ktorý nie je rovnobežný s osou y, potom f(a) vyjadruje sklon dotyčnice. :
\(k = f"(a)\)

Keďže \(k = tg(a) \), potom platí rovnosť \(f"(a) = tan(a) \).

Teraz si vysvetlime definíciu derivácie z pohľadu približných rovnosti. Nech funkcia \(y = f(x)\) má deriváciu v konkrétnom bode \(x\):
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
To znamená, že blízko bodu x je približná rovnosť \(\frac(\Delta y)(\Delta x) \približne f"(x)\), t.j. \(\Delta y \približne f"(x) \cdot\ Delta x\). Zmysluplný význam výslednej približnej rovnosti je nasledovný: prírastok funkcie je „takmer úmerný“ prírastku argumentu a koeficient úmernosti je hodnota derivácie v daný bod X. Napríklad pre funkciu \(y = x^2\) platí približná rovnosť \(\Delta y \cca 2x \cdot \Delta x \). Ak dôkladne analyzujeme definíciu derivátu, zistíme, že obsahuje algoritmus na jeho nájdenie.

Poďme to sformulovať.

Ako nájsť deriváciu funkcie y = f(x)?

1. Opravte hodnotu \(x\), nájdite \(f(x)\)
2. Dajte argumentu \(x\) prírastok \(\Delta x\), prejdite do nového bodu \(x+ \Delta x \), nájdite \(f(x+ \Delta x) \)
3. Nájdite prírastok funkcie: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Vytvorte vzťah \(\frac(\Delta y)(\Delta x) \)
5. Vypočítajte $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
Táto limita je deriváciou funkcie v bode x.

Ak funkcia y = f(x) má deriváciu v bode x, potom sa nazýva diferencovateľná v bode x. Zavolá sa procedúra hľadania derivácie funkcie y = f(x). diferenciácia funkcie y = f(x).

Poďme diskutovať o nasledujúcej otázke: ako spolu súvisí spojitosť a diferencovateľnosť funkcie v bode?

Nech je funkcia y = f(x) diferencovateľná v bode x. Potom je možné ku grafu funkcie v bode M(x; f(x)) nakresliť dotyčnicu a pripomíname, že uhlový koeficient dotyčnice sa rovná f "(x). Takýto graf sa nemôže „rozbiť“ v bode M, teda funkcia musí byť spojitá v bode x.

Boli to „praktické“ argumenty. Uveďme dôslednejšie zdôvodnenie. Ak je funkcia y = f(x) diferencovateľná v bode x, potom platí približná rovnosť \(\Delta y \approx f"(x) \cdot \Delta x\). Ak v tejto rovnosti \(\Delta x \) inklinuje k nule, potom \(\Delta y \) bude inklinovať k nule, a to je podmienka spojitosti funkcie v bode.

takže, ak je funkcia diferencovateľná v bode x, potom je v tomto bode spojitá.

Opačné tvrdenie nie je pravdivé. Napríklad: funkcia y = |x| je všade spojitá, najmä v bode x = 0, ale dotyčnica ku grafu funkcie v „bode spojenia“ (0; 0) neexistuje. Ak v určitom bode nemožno nakresliť tangens ku grafu funkcie, potom derivácia v tomto bode neexistuje.

Ďalší príklad. Funkcia \(y=\sqrt(x)\) je spojitá na celej číselnej osi, vrátane bodu x = 0. A dotyčnica ku grafu funkcie existuje v akomkoľvek bode, vrátane bodu x = 0 Ale v tomto bode sa dotyčnica zhoduje s osou y, to znamená, že je kolmá na os x, jej rovnica má tvar x = 0. Koeficient sklonu takýto riadok nemá, čo znamená, že neexistuje ani \(f"(0) \).

Zoznámili sme sa teda s novou vlastnosťou funkcie – diferencovateľnosťou. Ako možno z grafu funkcie vyvodiť záver, že je diferencovateľná?

Odpoveď je vlastne uvedená vyššie. Ak je v určitom bode možné nakresliť dotyčnicu ku grafu funkcie, ktorá nie je kolmá na os x, potom je funkcia v tomto bode diferencovateľná. Ak v určitom bode dotyčnica ku grafu funkcie neexistuje alebo je kolmá na os x, potom funkcia v tomto bode nie je diferencovateľná.

Pravidlá diferenciácie

Operácia nájdenia derivátu sa nazýva diferenciácia. Pri vykonávaní tejto operácie musíte často pracovať s kvocientmi, súčtami, súčinmi funkcií, ako aj „funkciami funkcií“, teda komplexnými funkciami. Na základe definície derivátu vieme odvodiť pravidlá diferenciácie, ktoré túto prácu uľahčia. Ak je C konštantné číslo a f=f(x), g=g(x) sú niektoré diferencovateľné funkcie, potom platí nasledovné pravidlá diferenciácie:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Derivácia komplexnej funkcie:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Tabuľka derivácií niektorých funkcií

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

Funkcie komplexného typu nie vždy zodpovedajú definícii komplexnej funkcie. Ak existuje funkcia tvaru y = sin x - (2 - 3) · a r c t g x x 5 7 x 10 - 17 x 3 + x - 11, potom ju nemožno považovať za komplexnú, na rozdiel od y = sin 2 x.

Tento článok ukáže koncept komplexnej funkcie a jej identifikáciu. Pracujme so vzorcami na nájdenie derivácie s príkladmi riešení v závere. Použitie tabuľky derivátov a pravidiel diferenciácie výrazne skracuje čas na nájdenie derivátu.

Yandex.RTB R-A-339285-1

Základné definície

Definícia 1

Komplexná funkcia je taká, ktorej argument je tiež funkciou.

Označuje sa takto: f (g (x)). Máme, že funkcia g (x) sa považuje za argument f (g (x)).

Definícia 2

Ak existuje funkcia f a je to kotangens funkcia, potom g(x) = ln x je funkcia prirodzeného logaritmu. Zistíme, že komplexnú funkciu f (g (x)) zapíšeme ako arctg (lnx). Alebo funkcia f, čo je funkcia umocnená na 4. mocninu, kde g (x) = x 2 + 2 x - 3 sa považuje za celú racionálnu funkciu, dostaneme, že f (g (x)) = (x 2 + 2 x - 3) 4.

Je zrejmé, že g(x) môže byť komplexný. Z príkladu y = sin 2 x + 1 x 3 - 5 je zrejmé, že hodnota g má odmocninu zlomku. Tento výraz možno označiť ako y = f (f 1 (f 2 (x))). Odkiaľ máme, že f je sínusová funkcia a f 1 je funkcia nachádzajúca sa pod druhá odmocnina, f 2 (x) = 2 x + 1 x 3 - 5 - zlomková racionálna funkcia.

Definícia 3

Stupeň vnorenia je určený ľubovoľným prirodzeným číslom a zapisuje sa ako y = f (f 1 (f 2 (f 3 (. . . (f n (x))))) .

Definícia 4

Koncept zloženia funkcie sa týka počtu vnorených funkcií podľa podmienok problému. Na riešenie použite vzorec na nájdenie derivácie komplexnej funkcie tvaru

(f (g (x))) " = f " (g (x)) g " (x)

Príklady

Príklad 1

Nájdite deriváciu komplexnej funkcie v tvare y = (2 x + 1) 2.

Riešenie

Podmienka ukazuje, že f je kvadratická funkcia a g(x) = 2 x + 1 sa považuje za lineárnu funkciu.

Použime derivačný vzorec pre komplexnú funkciu a napíšme:

f" (g (x)) = ((g (x)) 2) " = 2 (g (x)) 2 - 1 = 2 g (x) = 2 (2 x + 1); g " (x) = (2 x + 1) " = (2 x) " + 1 " = 2 x " + 0 = 2 1 x 1 - 1 = 2 ⇒ (f (g (x))) " = f " (g (x)) g " (x) = 2 (2 x + 1) 2 = 8 x + 4

Je potrebné nájsť deriváciu so zjednodušeným pôvodným tvarom funkcie. Získame:

y = (2 x + 1) 2 = 4 x 2 + 4 x + 1

Odtiaľ to máme

y " = (4 x 2 + 4 x + 1) " = (4 x 2) " + (4 x) " + 1 " = 4 (x 2) " + 4 (x) " + 0 = = 4 · 2 · x 2 - 1 + 4 · 1 · x 1 - 1 = 8 x + 4

Výsledky boli rovnaké.

Pri riešení problémov tohto typu je dôležité pochopiť, kde sa bude nachádzať funkcia tvaru f a g (x).

Príklad 2

Mali by ste nájsť deriváty komplexných funkcií v tvare y = sin 2 x a y = sin x 2.

Riešenie

Prvý zápis funkcie hovorí, že f je funkcia kvadratúry a g(x) je funkcia sínus. Potom to dostaneme

y " = (sin 2 x) " = 2 sin 2 - 1 x (sin x) " = 2 sin x cos x

Druhý záznam ukazuje, že f je sínusová funkcia a g(x) = x 2 označuje mocninovú funkciu. Z toho vyplýva, že súčin komplexnej funkcie píšeme ako

y " = (sin x 2) " = cos (x 2) (x 2) " = cos (x 2) 2 x 2 - 1 = 2 x cos (x 2)

Vzorec pre deriváciu y = f (f 1 (f 2 (f 3 (... (f n (x))))) sa zapíše ako y " = f " (f 1 (f 2 (f 3 (. . )) )) · . . . fn "(x)

Príklad 3

Nájdite deriváciu funkcie y = sin (ln 3 a r c t g (2 x)).

Riešenie

Tento príklad ukazuje náročnosť zápisu a určovania umiestnenia funkcií. Potom y = f (f 1 (f 2 (f 3 (f 4 (x))))) označuje, kde f , f 1 , f 2 , f 3 , f 4 (x) je funkcia sínus, funkcia zvyšovania do 3 stupňov, funkcia s logaritmom a základom e, arkustangens a lineárna funkcia.

Zo vzorca na definovanie komplexnej funkcie to máme

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2 " (f 3 (f 4 (x)) f 3 " (f 4 (x)) f 4 " (x)

Dostaneme to, čo potrebujeme nájsť

  1. f " (f 1 (f 2 (f 3 (f 4 (x))))) ako derivácia sínusu podľa tabuľky derivácií, potom f " (f 1 (f 2 (f 3 (f 4 ( x)))) ) = cos (ln 3 a r c t g (2 x)) .
  2. f 1 " (f 2 (f 3 (f 4 (x)))) ako derivácia mocninovej funkcie, potom f 1 " (f 2 (f 3 (f 4 (x)))) = 3 ln 3 - 1 a rc t g (2 x) = 3 ln 2 a r c t g (2 x).
  3. f 2 " (f 3 (f 4 (x))) ako logaritmická derivácia, potom f 2 " (f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3" (f 4 (x)) ako derivácia arkustangens, potom f 3" (f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2.
  5. Pri hľadaní derivácie f 4 (x) = 2 x odstráňte 2 zo znamienka derivácie pomocou vzorca pre deriváciu mocninnej funkcie s exponentom rovným 1, potom f 4 " (x) = (2 x) "= 2 x" = 2 · 1 · x 1 - 1 = 2.

Skombinujeme medzivýsledky a dostaneme to

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2 " (f 3 (f 4 (x)) f 3 " (f 4 (x)) f 4 " (x) = = cos (ln 3 a r c t g (2 x)) 3 ln 2 a r c t g (2 x) 1 a r c t g (2 x) 1 1 + 4 x 2 2 = = 6 cos (ln 3 a r c t g (2 x)) ln 2 a r c t g (2 x) a r c t g (2 x) (1 + 4 x 2)

Analýza takýchto funkcií pripomína hniezdiace bábiky. Diferenciačné pravidlá nemožno vždy použiť explicitne pomocou derivačnej tabuľky. Často je potrebné použiť vzorec na nájdenie derivátov komplexných funkcií.

Existujú určité rozdiely medzi zložitým vzhľadom a zložitými funkciami. S jasnou schopnosťou to rozlíšiť bude hľadanie derivátov obzvlášť jednoduché.

Príklad 4

Je potrebné zvážiť uvedenie takéhoto príkladu. Ak existuje funkcia tvaru y = t g 2 x + 3 t g x + 1, potom ju možno považovať za komplexnú funkciu tvaru g (x) = t g x, f (g) = g 2 + 3 g + 1 . Je zrejmé, že pre komplexný derivát je potrebné použiť vzorec:

f " (g (x)) = (g 2 (x) + 3 g (x) + 1) " = (g 2 (x)) " + (3 g (x)) " + 1 " = = 2 · g2 - 1 (x) + 3 g" (x) + 0 = 2 g (x) + 3 1 g 1 - 1 (x) = = 2 g (x) + 3 = 2 t g x + 3; g " (x) = (t g x) " = 1 cos 2 x ⇒ y " = (f (g (x)) " = f " (g (x)) g " (x) = (2 t g x + 3 ) · 1 cos 2 x = 2 t g x + 3 cos 2 x

Funkcia tvaru y = t g x 2 + 3 t g x + 1 sa nepovažuje za komplexnú, pretože má súčet t g x 2, 3 t g x a 1. Avšak t g x 2 sa považuje za komplexnú funkciu, potom získame mocninnú funkciu v tvare g (x) = x 2 a f, čo je tangensová funkcia. Ak to chcete urobiť, rozlišujte podľa množstva. Chápeme to

y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + (3 t g x) " + 1 " = = (t g x 2) " + 3 (t g x) " + 0 = (t g x 2) " + 3 čo 2 x

Prejdime k hľadaniu derivácie komplexnej funkcie (t g x 2) ":

f " (g (x)) = (t g (g (x))" = 1 cos 2 g (x) = 1 cos 2 (x 2) g " (x) = (x 2) " = 2 x 2 - 1 = 2 x ⇒ (t g x 2) " = f " (g (x)) g " (x) = 2 x cos 2 (x 2)

Dostaneme, že y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

Funkcie komplexného typu môžu byť zahrnuté do komplexných funkcií a samotné komplexné funkcie môžu byť zložkami funkcií komplexného typu.

Príklad 5

Uvažujme napríklad komplexnú funkciu v tvare y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1)

Táto funkcia môže byť reprezentovaná ako y = f (g (x)), kde hodnota f je funkciou logaritmu so základom 3 a g (x) sa považuje za súčet dvoch funkcií tvaru h (x) = x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 a k (x) = ln 2 x (x 2 + 1) . Je zrejmé, že y = f (h (x) + k (x)).

Zvážte funkciu h(x). Toto je pomer l (x) = x 2 + 3 cos 3 (2 x + 1) + 7 k m (x) = e x 2 + 3 3

Máme, že l (x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n (x) + p (x) je súčet dvoch funkcií n (x) = x 2 + 7 a p ( x) = 3 cos 3 (2 x + 1), kde p (x) = 3 p 1 (p 2 (p 3 (x))) je komplexná funkcia s číselným koeficientom 3 a p 1 je funkcia kocky, p 2 pomocou kosínusovej funkcie, p 3 (x) = 2 x + 1 pomocou lineárnej funkcie.

Zistili sme, že m (x) = e x 2 + 3 3 = q (x) + r (x) je súčet dvoch funkcií q (x) = e x 2 a r (x) = 3 3, kde q (x) = q 1 (q 2 (x)) je komplexná funkcia, q 1 je funkcia s exponenciálou, q 2 (x) = x 2 je mocninová funkcia.

To ukazuje, že h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 p 1 (p 2 ( p 3 (x))) q 1 (q 2 (x)) + r (x)

Pri prechode na výraz v tvare k (x) = ln 2 x (x 2 + 1) = s (x) t (x) je zrejmé, že funkcia je prezentovaná v tvare komplexu s (x) = ln 2 x = s 1 ( s 2 (x)) s racionálnym celým číslom t (x) = x 2 + 1, kde s 1 je funkcia druhej mocniny a s 2 (x) = ln x je logaritmická so základom e .

Z toho vyplýva, že výraz bude mať tvar k (x) = s (x) · t (x) = s 1 (s 2 (x)) · t (x).

Potom to dostaneme

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1) = = f n (x) + 3 p 1 (p 2 (p 3 ( x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) t (x)

Na základe štruktúr funkcie sa ukázalo, ako a aké vzorce je potrebné použiť na zjednodušenie výrazu pri jeho diferenciácii. Pre oboznámenie sa s takýmito problémami a pre koncepciu ich riešenia je potrebné obrátiť sa k bodu diferenciácie funkcie, teda k nájdeniu jej derivácie.

Ak si všimnete chybu v texte, zvýraznite ju a stlačte Ctrl+Enter

Komplexné deriváty. Logaritmická derivácia.
Derivácia mocninnej exponenciálnej funkcie

Pokračujeme v zlepšovaní našej techniky diferenciácie. V tejto lekcii si upevníme preberaný materiál, pozrieme sa na zložitejšie deriváty a tiež sa zoznámime s novými technikami a trikmi na nájdenie derivátu, najmä s logaritmickou deriváciou.

Tí čitatelia, ktorí majú nízku úroveň prípravy, by si mali prečítať článok Ako nájsť derivát? Príklady riešení, čo vám umožní zvýšiť svoje zručnosti takmer od nuly. Ďalej si musíte stránku dôkladne preštudovať Derivácia komplexnej funkcie, pochopiť a vyriešiť Všetky príklady, ktoré som uviedol. Táto lekcia je logicky už tretia v poradí a po jej zvládnutí s istotou odlíšite dosť zložité funkcie. Je nežiaduce zastávať pozíciu „Kde inde? Áno, to stačí “, pretože všetky príklady a riešenia sú prevzaté zo skutočnosti testy a v praxi sa s nimi často stretávame.

Začnime opakovaním. V triede Derivácia komplexnej funkcie Pozreli sme sa na množstvo príkladov s podrobnými komentármi. V priebehu štúdia diferenciálneho počtu a iných odvetví matematickej analýzy budete musieť veľmi často rozlišovať a nie vždy je vhodné (a nie vždy potrebné) opisovať príklady veľmi podrobne. Preto si hľadanie derivátov precvičíme ústne. Najvhodnejšími „kandidátmi“ na to sú deriváty najjednoduchších zložitých funkcií, napríklad:

Podľa pravidla diferenciácie komplexných funkcií :

Pri štúdiu iných matanských tém v budúcnosti sa takýto podrobný záznam najčastejšie nevyžaduje, predpokladá sa, že študent vie nájsť takéto deriváty na autopilotovi. Predstavme si, že o 3. hodine ráno bola a telefonický hovor a príjemný hlas sa spýtal: "Aká je derivácia dotyčnice dvoch X?" Potom by mala nasledovať takmer okamžitá a zdvorilá odpoveď: .

Prvý príklad bude okamžite určený na samostatné riešenie.

Príklad 1

Nájdite nasledujúce deriváty ústne, v jednej akcii, napríklad: . Na dokončenie úlohy stačí použiť tabuľka derivácií elementárnych funkcií(ak si si to ešte nepamätal). Ak máte nejaké ťažkosti, odporúčam si lekciu znovu prečítať Derivácia komplexnej funkcie.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Odpovede na konci hodiny

Komplexné deriváty

Po predbežnej delostreleckej príprave budú príklady s 3-4-5 hniezdeniami funkcií menej desivé. Možno sa niekomu budú nasledujúce dva príklady zdať komplikované, ale ak ich pochopíte (niekto bude trpieť), tak takmer všetko ostatné v diferenciálny počet Bude to vyzerať ako detský vtip.

Príklad 2

Nájdite deriváciu funkcie

Ako už bolo uvedené, pri hľadaní derivácie komplexnej funkcie je to predovšetkým potrebné Správne POCHOPTE svoje investície. V prípadoch, keď existujú pochybnosti, pripomínam vám užitočnú techniku: vezmeme napríklad experimentálnu hodnotu „x“ a pokúsime sa (mentálne alebo v koncepte) nahradiť daná hodnota do „strašného výrazu“.

1) Najprv musíme vypočítať výraz, čo znamená, že súčet je najhlbšie vloženie.

2) Potom musíte vypočítať logaritmus:

4) Potom položte kosínus:

5) V piatom kroku rozdiel:

6) A nakoniec najvzdialenejšia funkcia je druhá odmocnina:

Vzorec na diferenciáciu komplexnej funkcie sa aplikujú v opačnom poradí, od vonkajšej funkcie po najvnútornejšiu. Rozhodujeme sa:

Zdá sa, že neexistujú žiadne chyby...

(1) Vezmite deriváciu druhej odmocniny.

(2) Zoberieme deriváciu rozdielu pomocou pravidla

(3) Derivácia trojky je nula. V druhom člene vezmeme deriváciu stupňa (kocku).

(4) Vezmite deriváciu kosínusu.

(5) Vezmite deriváciu logaritmu.

(6) A nakoniec vezmeme derivát najhlbšieho vloženia .

Môže sa to zdať príliš ťažké, ale toto nie je ten najbrutálnejší príklad. Vezmite si napríklad Kuznecovovu zbierku a oceníte všetku krásu a jednoduchosť analyzovaného derivátu. Všimol som si, že radi dávajú podobnú vec na skúške, aby si overili, či študent rozumie, ako nájsť deriváciu komplexnej funkcie, alebo nerozumie.

Nasledujúci príklad je na to, aby ste si ho vyriešili sami.

Príklad 3

Nájdite deriváciu funkcie

Tip: Najprv použijeme pravidlá linearity a pravidlo diferenciácie produktu

Úplné riešenie a odpoveď na konci hodiny.

Je čas prejsť na niečo menšie a krajšie.
Nie je nezvyčajné, že príklad ukazuje súčin nie dvoch, ale troch funkcií. Ako nájsť derivát produkty troch multiplikátory?

Príklad 4

Nájdite deriváciu funkcie

Najprv sa pozrieme, je možné premeniť súčin troch funkcií na súčin dvoch funkcií? Napríklad, ak by sme v súčine mali dva polynómy, mohli by sme otvoriť zátvorky. Ale v uvažovanom príklade sú všetky funkcie odlišné: stupeň, exponent a logaritmus.

V takýchto prípadoch je to nevyhnutné postupne uplatniť pravidlo diferenciácie produktov dvakrát

Trik je v tom, že „y“ označujeme súčin dvoch funkcií: a „ve“ označujeme logaritmus: . Prečo sa to dá urobiť? Je to možné? – to nie je súčin dvoch faktorov a pravidlo nefunguje?! Nie je nič zložité:

Teraz zostáva použiť pravidlo druhýkrát do zátvorky:

Môžete sa tiež skrútiť a dať niečo zo zátvoriek, ale v tomto prípade je lepšie nechať odpoveď presne v tejto forme - bude to jednoduchšie skontrolovať.

Uvažovaný príklad možno vyriešiť druhým spôsobom:

Obe riešenia sú absolútne ekvivalentné.

Príklad 5

Nájdite deriváciu funkcie

Toto je príklad pre nezávislé riešenie vo vzorke je riešené pomocou prvej metódy.

Pozrime sa na podobné príklady so zlomkami.

Príklad 6

Nájdite deriváciu funkcie

Môžete sem ísť niekoľkými spôsobmi:

Alebo takto:

Ale riešenie bude napísané kompaktnejšie, ak najprv použijeme pravidlo diferenciácie kvocientu , pričom pre celý čitateľ:

V zásade je príklad vyriešený a ak sa nechá tak, nebude to chyba. Ale ak máte čas, vždy je vhodné skontrolovať návrh, či sa odpoveď nedá zjednodušiť? Zredukujme vyjadrenie čitateľa na spoločného menovateľa a zbavme sa trojposchodového zlomku:

Nevýhodou dodatočných zjednodušení je, že existuje riziko, že sa pomýlite nie pri hľadaní derivátu, ale pri banálnych školských transformáciách. Na druhej strane učitelia často zadanie odmietnu a žiadajú, aby im „pripomenuli“ derivát.

Jednoduchší príklad, ktorý môžete vyriešiť sami:

Príklad 7

Nájdite deriváciu funkcie

Pokračujeme v ovládaní metód hľadania derivácie a teraz zvážime typický prípad, keď sa na diferenciáciu navrhuje „strašný“ logaritmus.

Príklad 8

Nájdite deriváciu funkcie

Tu môžete prejsť dlhú cestu pomocou pravidla na diferenciáciu komplexnej funkcie:

Ale hneď prvý krok vás okamžite uvrhne do skľúčenosti - musíte vziať nepríjemnú deriváciu z zlomkovej mocniny a potom aj zo zlomku.

Preto predtým ako vziať deriváciu „sofistikovaného“ logaritmu, najprv sa zjednoduší pomocou dobre známych školských vlastností:



! Ak máte po ruke cvičný zošit, skopírujte si tieto vzorce priamo tam. Ak nemáte poznámkový blok, skopírujte si ich na kus papiera, pretože zvyšné príklady lekcie sa budú točiť okolo týchto vzorcov.

Samotné riešenie môže byť napísané asi takto:

Transformujme funkciu:

Nájdenie derivátu:

Predkonverzia samotnej funkcie značne zjednodušila riešenie. Preto, keď sa na diferenciáciu navrhuje podobný logaritmus, vždy sa odporúča „rozložiť ho“.

A teraz pár jednoduchých príkladov, ktoré môžete vyriešiť sami:

Príklad 9

Nájdite deriváciu funkcie

Príklad 10

Nájdite deriváciu funkcie

Všetky transformácie a odpovede sú na konci lekcie.

Logaritmická derivácia

Ak je derivácia logaritmu taká sladká hudba, potom vyvstáva otázka: je možné v niektorých prípadoch logaritmus umelo usporiadať? Môže! A dokonca nevyhnutné.

Príklad 11

Nájdite deriváciu funkcie

Nedávno sme sa pozreli na podobné príklady. čo robiť? Postupne môžete použiť pravidlo diferenciácie kvocientu a potom pravidlo diferenciácie produktu. Nevýhodou tejto metódy je, že skončíte s obrovským trojposchodovým zlomkom, s ktorým sa vôbec nechcete zaoberať.

Ale v teórii a praxi existuje taká úžasná vec ako logaritmická derivácia. Logaritmy možno umelo organizovať ich „zavesením“ na obe strany:

Teraz musíte čo najviac „rozbiť“ logaritmus pravej strany (vzorce pred vašimi očami?). Popíšem tento proces veľmi podrobne:

Začnime s diferenciáciou.
Obe časti uzatvárame pod prvočíslom:

Derivát pravej strany je celkom jednoduchý, nebudem to komentovať, pretože ak čítate tento text, mali by ste s ním sebavedomo narábať.

A čo ľavá strana?

Na ľavej strane máme komplexná funkcia. Predpokladám otázku: „Prečo, je pod logaritmom jedno písmeno „Y“?

Faktom je, že táto „hra s jedným písmenom“ - JE SAMA FUNKCIOU(ak to nie je veľmi jasné, pozrite si článok Derivácia implicitne špecifikovanej funkcie). Preto je logaritmus vonkajšia funkcia a „y“ je vnútorná funkcia. A používame pravidlo na diferenciáciu komplexnej funkcie :

Na ľavej strane akoby mávnutím kúzla máme derivát. Ďalej podľa pravidla proporcie prenesieme „y“ z menovateľa ľavej strany do hornej časti pravej strany:

A teraz si spomeňme, o akej funkcii „hráča“ sme hovorili pri rozlišovaní? Pozrime sa na stav:

Konečná odpoveď:

Príklad 12

Nájdite deriváciu funkcie

Toto je príklad, ktorý môžete vyriešiť sami. Vzorový návrh príkladu tohto typu je na konci lekcie.

Pomocou logaritmickej derivácie bolo možné vyriešiť ktorýkoľvek z príkladov č. 4-7, ďalšia vec je, že funkcie sú tam jednoduchšie a možno použitie logaritmickej derivácie nie je veľmi opodstatnené.

Derivácia mocninnej exponenciálnej funkcie

O tejto funkcii sme zatiaľ neuvažovali. Mocninná exponenciálna funkcia je funkcia, pre ktorú stupeň aj základ závisia od „x“. Klasický príklad, ktorý vám bude poskytnutý v akejkoľvek učebnici alebo prednáške:

Ako nájsť deriváciu mocninno-exponenciálnej funkcie?

Je potrebné použiť práve diskutovanú techniku ​​- logaritmickú deriváciu. Logaritmy zavesíme na obe strany:

Spravidla sa na pravej strane stupeň odoberá spod logaritmu:

Výsledkom je, že na pravej strane máme súčin dvoch funkcií, ktoré budú diferencované podľa štandardného vzorca .

Nájdeme derivát, aby sme to urobili, uzatvoríme obe časti pod ťahy:

Ďalšie akcie sú jednoduché:

Nakoniec:

Ak niektorý prevod nie je úplne jasný, prečítajte si pozorne vysvetlenia príkladu č. 11.

IN praktické úlohy Mocninno-exponenciálna funkcia bude vždy zložitejšia ako príklad rozoberaný v prednáške.

Príklad 13

Nájdite deriváciu funkcie

Používame logaritmickú deriváciu.

Na pravej strane máme konštantu a súčin dvoch faktorov – „x“ a „logaritmus logaritmu x“ (pod logaritmus je vnorený ďalší logaritmus). Pri diferencovaní, ako si pamätáme, je lepšie okamžite presunúť konštantu z derivačného znamienka, aby neprekážala; a samozrejme uplatňujeme známe pravidlo :


Ako vidíte, algoritmus na použitie logaritmickej derivácie neobsahuje žiadne špeciálne triky alebo triky a nájdenie derivácie mocninovej exponenciálnej funkcie zvyčajne nie je spojené s „mučením“.