Что такое угол между прямой и плоскостью. Угол между прямой и плоскостью. Перпендикулярность прямой и плоскости

Статья начинается с определение угла между прямой и плоскостью. В данной статье будет показано нахождение угла между прямой и плоскостью методом координат. Подробно будут рассмотрены решение примеров и задач.

Yandex.RTB R-A-339285-1

Предварительно необходимо повторить понятие о прямой линии в пространстве и понятие плоскости. Для определения угла между прямой и плоскостью необходимый несколько вспомогательных определений. Рассмотрим эти определения подробно.

Определение 1

Прямая и плоскость пересекаются в том случае, когда они имеют одну общую точку, то есть она является точкой пересечения прямой и плоскости.

Прямая, пересекающая плоскость, может являться перпендикулярной относительно плоскости.

Определение 2

Прямая является перпендикулярной к плоскости , когда она перпендикулярна любой прямой, находящейся в этой плоскости.

Определение 3

Проекция точки M на плоскость γ является сама точка, если она лежит в заданной плоскости, либо является точкой пересечения плоскости с прямой, перпендикулярной плоскости γ , проходящей через точку M , при условии, что она не принадлежит плоскости γ .

Определение 4

Проекция прямой а на плоскость γ - это множество проекций всех точек заданной прямой на плоскость.

Отсюда получаем, что перпендикулярная к плоскости γ проекция прямой имеет точку пересечения. Получаем, что проекция прямой a – это прямая, принадлежащая плоскости γ и проходящая через точку пересечения прямой a и плоскости. Рассмотрим на рисунке, приведенном ниже.

На данный момент имеем все необходимые сведения и данные для формулировки определения угла между прямой и плоскостью

Определение 5

Углом между прямой и плоскостью называют угол между этой прямой и ее проекцией на эту плоскость, причем прямая не перпендикулярна к ней.

Определение угла, приведенное выше, помогает прийти к выводу о том, что угол между прямой и плоскостью представляет собой угол между двумя пересекающимися прямыми, то есть заданной прямой вместе с ее проекцией на плоскость. Значит, угол между ними всегда будет острым. Рассмотрим на картинке, приведенной ниже.

Угол, расположенный между прямой и плоскостью, считается прямым, то есть равным 90 градусов, а угол, расположенный между параллельными прямыми, не определяется. Бывают случаи, когда его значение берется равным нулю.

Задачи, где необходимо найти угол между прямой и плоскостью, имеет множество вариация решения. Ход самого решения зависит от имеющихся данных по условию. Частыми спутниками решения являются признаки подобия или равенства фигур, косинусы, синусы, тангенсы углов. Нахождение угла возможно при помощи метода координат. Рассмотрим его более детально.

Если в трехмерном пространстве вводится прямоугольная система координат О х у z , тогда в ней задается прямая a , пересекающая плоскость γ в точке M , причем она не перпендикулярна плоскости. Необходимо найти угол α , находящийся между заданной прямой и плоскостью.

Для начала необходимо применить определение угла между прямой и плоскостью методом координат. Тогда получим следующее.

В системе координат О х у z задается прямая a , которой соответствуют уравнения прямой в пространстве и направляющий вектор прямой пространства, для плоскости γ соответствует уравнение плоскости и нормальный вектор плоскости. Тогда a → = (a x , a y , a z) является направляющим вектором заданной прямой a , а n → (n x , n y , n z) - нормальным вектором для плоскости γ . Если представить, что у нас имеются координаты направляющего вектора прямой a и нормального вектора плоскости γ , тогда известны их уравнения, то есть заданы по условию, тогда есть возможность определения векторов a → и n → , исходя из уравнения.

Для вычисления угла необходимо преобразовать формулу, позволяющую получить значение этого угла при помощи имеющихся координат направляющего вектора прямой и нормального вектора.

Необходимо отложить векторы a → и n → , начиная от точки пересечения прямой a с плоскостью γ . Существуют 4 варианта расположения этих векторов относительно заданных прямых и плоскости. Рассмотри рисунок, приведенный ниже, на котором имеются все 4 вариации.

Отсюда получаем, что угол между векторами a → и n → имеет обозначение a → , n → ^ и является острым, тогда искомый угол α , располагающийся между прямой и плоскостью, дополняется, то есть получаем выражение вида a → , n → ^ = 90 ° - α . Когда по условию a → , n → ^ > 90 ° , тогда имеем a → , n → ^ = 90 ° + α .

Отсюда имеем, что косинусы равных углов являются равными, тогда последние равенства записываются в виде системы

cos a → , n → ^ = cos 90 ° - α , a → , n → ^ < 90 ° cos a → , n → ^ = cos 90 ° + α , a → , n → ^ > 90 °

Необходимо использовать формулы приведения для упрощения выражений. Тогда получим равенства вида cos a → , n → ^ = sin α , a → , n → ^ < 90 ° cos a → , n → ^ = - s i n α , a → , n → ^ > 90 ° .

Проведя преобразования, система приобретает вид sin α = cos a → , n → ^ , a → , n → ^ < 90 ° sin α = - cos a → , n → ^ , a → , n → ^ > 90 ° ⇔ sin α = cos a → , n → ^ , a → , n → ^ > 0 sin α = - cos a → , n → ^ , a → , n → ^ < 0 ⇔ ⇔ sin α = cos a → , n → ^

Отсюда получим, что синус угла между прямой и плоскостью равен модулю косинуса угла между направляющим вектором прямой и нормальным вектором заданной плоскости.

Раздел нахождения угла, образованного двумя векторами, выявили, что этот угол принимает значение скалярного произведения векторов и произведения этих длин. Процесс вычисления синуса угла, полученного пересечением прямой и плоскости, выполняется по формуле

sin α = cos a → , n → ^ = a → , n → ^ a → · n → = a x · n x + a y · n y + a z · n z a x 2 + a y 2 + a z 2 · n x 2 + n y 2 + n z 2

Значит, формулой для вычисления угла между прямой и плоскостью с координатами направляющего вектора прямой и нормального вектора плоскости после преобразования получается вида

α = a r c sin a → , n → ^ a → · n → = a r c sin a x · n x + a y · n y + a z · n z a x 2 + a y 2 + a z 2 · n x 2 + n y 2 + n z 2

Нахождение косинуса при известном синусе позволительно, применив основное тригонометрическое тождество. Пересечение прямой и плоскости образует острый угол. Это говорит о том, что его значение будет являться положительным числом, а его вычисление производится из формулы cos α = 1 - sin α .

Выполним решение нескольких подобных примеров для закрепления материала.

Пример 1

Найти угол, синус, косинус угла, образованного прямой x 3 = y + 1 - 2 = z - 11 6 и плоскостью 2 x + z - 1 = 0 .

Решение

Для получения координат направляющего вектора необходимо рассмотреть канонические уравнения прямой в пространстве. Тогда получим, что a → = (3 , - 2 , 6) является направляющим вектором прямой x 3 = y + 1 - 2 = z - 11 6 .

Для нахождения координат нормального вектора необходимо рассмотреть общее уравнение плоскости, так как их наличие определяется коэффициентами, имеющимися перед переменными уравнения. Тогда получим, что для плоскости 2 x + z - 1 = 0 нормальный вектор имеет вид n → = (2 , 0 , 1) .

Необходимо перейти к вычислению синуса угла между прямой и плоскостью. Для этого необходимо произвести подстановку координат векторов a → и b → в заданную формулу. Получаем выражение вида

sin α = cos a → , n → ^ = a → , n → ^ a → · n → = a x · n x + a y · n y + a z · n z a x 2 + a y 2 + a z 2 · n x 2 + n y 2 + n z 2 = = 3 · 2 + (- 2) · 0 + 6 · 1 3 2 + (- 2) 2 + 6 2 · 2 2 + 0 2 + 1 2 = 12 7 5

Отсюда найдем значение косинуса и значение самого угла. Получим:

cos α = 1 - sin α = 1 - 12 7 5 2 = 101 7 5

Ответ: sin α = 12 7 5 , cos α = 101 7 5 , α = a r c cos 101 7 5 = a r c sin 12 7 5 .

Пример 2

Имеется пирамида, построенная при помощи значений векторов A B → = 1 , 0 , 2 , A C → = (- 1 , 3 , 0) , A D → = 4 , 1 , 1 . Найти угол между прямой A D и плоскостью А В С.

Решение

Для вычисления искомого угла, необходимо иметь значения координат направляющего вектора прямой и нормального вектора плоскости. для прямой A D направляющий вектор имеет координаты A D → = 4 , 1 , 1 .

Нормальный вектор n → , принадлежащий плоскости А В С, является перпендикулярным вектору A B → и A C → . Это подразумевает то, что нормальным вектором плоскости А В С можно считать векторное произведение векторов A B → и A C → . Вычислим это по формуле и получим:

n → = A B → × A C → = i → j → k → 1 0 2 - 1 3 0 = - 6 · i → - 2 · j → + 3 · k → ⇔ n → = (- 6 , - 2 , 3)

Необходимо произвести подстановку координат векторов для вычисления искомого угла, образованного пересечением прямой и плоскости. получим выражение вида:

α = a r c sin A D → , n → ^ A D → · n → = a r c sin 4 · - 6 + 1 · - 2 + 1 · 3 4 2 + 1 2 + 1 2 · - 6 2 + - 2 2 + 3 2 = a r c sin 23 21 2

Ответ: a r c sin 23 21 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На понятии проекции наклонной основано определение угла между прямой и плоскостью. Определение. Углом между прямой линией и плоскостью называется угол между этой прямой и ее проекцией на данную плоскость.

На рис. 341 изображен угол а между наклонной AM и ее проекцией на плоскость К.

Примечание. Если прямая параллельна плоскости или лежит в ней, то угол ее с плоскостью считается равным нулю. Если она перпендикулярна к плоскости, то угол объявляется прямым (предыдущее определение здесь в буквальном смысле неприменимо!). В остальных случаях подразумевается острый угол между прямой и ее проекцией. Поэтому угол между прямой и плоскостью никогда не превышает прямого. Еще заметим, что здесь вернее говорить о мере угла, а не об угле (действительно, речь идет о мере наклона прямой к плоскости, понятие же угла как плоской фигуры, ограниченной двумя лучами, не имеет сюда прямого отношения).

Убедимся еще в одном свойстве острого угла между прямой линией и плоскостью.

Из всех углов, образованных данной прямой и всевозможными прямыми в плоскости, угол с проекцией данной прямой наименьший.

Доказательство. Обратимся к рис. 342. Пусть а - данная прямая, - ее проекция на плоскость - произвольная другая прямая в плоскости К (мы провели ее для удобства через точку А пересечения прямой а с плоскостью ). Отложим на прямой отрезок т. е. равный основанию наклонной МА, где проекция одной из точек наклонной а.

Тогда в треугольниках две стороны равны: сторона AM общая, равны по построению. Но третья сторона в треугольнике больше третьей стороны в треугольнике (наклонная больше перпендикуляра). Значит, и противолежащий угол в больше соответствующего угла а в (см. п. 217): , что и требовалось доказать.

Угол между прямой и плоскостью - это наименьший из углов между данной прямой и всевозможными прямыми в плоскости.

Справедлива и такая

Теорема. Острый угол между прямой, лежащей в плоскости, и проекцией наклонной на эту плоскость меньше угла между этой прямой и самой наклонной.

Доказательство. Пусть - прямая, лежащая в плоскости (рис. 342), а - наклонная к плоскости, т - ее проекция на плоскость. Будем рассматривать прямую как наклонную к плоскости тогда будет ее проекцией на указанную плоскость и по предыдущему свойству найдем: что и требовалось доказать. По теореме о трех перпендикулярах видно, что в случае, когда прямая в плоскости перпендикулярна к, проекции наклонной (случай не острого, а прямого угла), прямая также перпендикулярна и к самой наклонной; в этом случае оба угла, о которых мы говорим, прямые и потому равны между собой.

Пусть задана некоторая прямоугольная система координат и прямая. Пустьи две различные плоскости, пересекающиеся по прямой и задаваемые соответственно уравнениямии. Эти два уравнения совместно определяют прямуюв том и только в том случае, когда они не параллельны и не совпадают друг с другом, т. е. нормальные векторы
и
этих плоскостей не коллинеарны.

Определение. Есликоэффициенты уравнений

не пропорциональны, то эти уравнения называются общими уравнениями прямой, определяемой как линия пересечения плоскостей.

Определение. Любой ненулевой вектор, параллельный прямой, называется направляющим вектором этой прямой.

Выведем уравнение прямой , проходящей через данную точку
пространства и имеющей заданный направляющий вектор
.

Пусть точка
 произвольная точка прямой . Эта точка лежит на прямой тогда и только тогда, когда вектор
, имеющий координаты
, коллинеарен направляющему вектору
прямой. Согласно (2.28) условие коллинеарности векторов
иимеет вид

. (3.18)

Уравнения (3.18) называются каноническими уравнениями прямой, проходящей через точку
и имеющей направляющий вектор
.

Если прямая задана общими уравнениями (3.17), то направляющий векторэтой прямой ортогонален нормальным векторам
и
плоскостей, задаваемых уравнениямии. Вектор
по свойству векторного произведения ортогонален каждому из векторови. Согласно определению в качестве направляющего векторапрямойможно взять вектор
, т. е.
.

Для нахождения точки
рассмотрим систему уравнений
. Так как плоскости, определяемые уравнениямии, не параллельны и не совпадают, то не выполняется хотя бы одно из равенств
. Это приводит к тому, что хотя бы один из определителей,
,
отличен от нуля. Для определенности будем считать, что
. Тогда, взяв произвольное значение, получим систему уравнений относительно неизвестныхи:

.

По теореме Крамера эта система имеет единственное решение, определяемое формулами

,
. (3.19)

Если взять
, то прямая, задаваемая уравнениями (3.17), проходит через точку
.

Таким образом, для случая, когда
, канонические уравнения прямой (3.17) имеют вид

.

Аналогично записываются канонические уравнения прямой (3.17) для случая, когда отличен от нуля определитель
или
.

Если прямая проходит через две различные точки
и
, то ее канонические уравнения имеют вид

. (3.20)

Это следует из того, что прямая проходит через точку
и имеет направляющий вектор.

Рассмотрим канонические уравнения (3.18) прямой. Примем каждое из отношений за параметр , т. е.
. Один из знаменателей этих дробей отличен от нуля, а соответствующий числитель может принимать любые значения, поэтому параметрможет принимать любые вещественные значения. Учитывая, что каждое из отношений равно, получимпараметрические уравнения прямой:

,
,
. (3.21)

Пусть плоскость задана общим уравнением, а прямая параметрическими уравнениями
,
,
. Точка
пересечения прямойи плоскостидолжна одновременно принадлежать плоскости и прямой. Это возможно только в том случае, когда параметрудовлетворяет уравнению, т. е.
. Таким образом, точка пересечения прямой и плоскости имеет координаты

,

,

.

П р и м е р 32. Составить параметрические уравнения прямой, проходящей через точки
и
.

Решение. За направляющий вектор прямой возьмем вектор

. Прямая проходит через точку, поэтому по формуле (3.21) искомые уравнения прямой имеют вид
,
,
.

П р и м е р 33. Вершины треугольника
имеют координаты
,
и
соответственно. Составить параметрические уравнения медианы, проведенной из вершины.

Решение. Пусть
 середина стороны
, тогда
,
,
. В качестве направляющего вектора медианы возьмем вектор
. Тогда параметрические уравнения медианы имеют вид
,
,
.

П р и м е р 34. Составить канонические уравнения прямой, проходящей через точку
параллельно прямой
.

Решение. Прямая задана как линия пересечения плоскостей с нормальными векторами
и
. В качестве направляющего вектораэтой прямой возьмем вектор
, т. е.
. Согласно (3.18) искомое уравнение имеет вид
или
.

3.8. Угол между прямыми в пространстве. Угол между прямой и плоскостью

Пусть две прямые ив пространстве заданы своими каноническими уравнениями
и
. Тогда один из угловмежду этими прямыми равен углу между их направляющими векторами
и
. Воспользовавшись формулой (2.22), для определения углаполучим формулу

. (3.22)

Второй угол между этими прямыми равен
и
.

Условие параллельности прямых иравносильно условию коллинеарности векторов
и
и заключается в пропорциональности их координат, т. е. условие параллельности прямых имеет вид

. (3.23)

Если прямые иперпендикулярны, то их направляющие векторы ортогональны, т.е. условие перпендикулярности определяется равенством

. (3.24)

Рассмотрим плоскость , заданную общим уравнением, и прямую, заданную каноническими уравнениями
.

Угол между прямойи плоскостьюявляется дополнительным к углумежду направляющим вектором прямой и нормальным вектором плоскости, т. е.
и
, или

. (3.24)

Условие параллельности прямой и плоскостиэквивалентно условию перпендикулярности направляющего вектора прямой и нормального вектора плоскости, т. е. скалярное произведение этих векторов должно равняться нулю:

Если же прямая перпендикулярна плоскости, то направляющий вектор прямой и нормальный вектор плоскости должны быть коллинеарны. В этом случае координаты векторов пропорциональны, т. е.

. (3.26)

П р и м е р 35. Найти тупой угол между прямыми
,
,
и
,
,
.

Решение. Направляющие векторы этих прямых имеют координаты
и
. Поэтому один уголмежду прямыми определяется соотношением, т. е.
. Поэтому условию задачи удовлетворяет второй угол между прямыми, равный
.

3.9. Расстояние от точки до прямой в пространстве

Пусть
 точка пространства с координатами
, прямая, заданная каноническими уравнениями
. Найдем расстояниеот точки
до прямой.

Приложим направляющий вектор
к точке
. Расстояниеот точки
до прямойявляется высотой параллелограмма, построенного на векторахи
. Найдем площадь параллелограмма, используя векторное произведение:

С другой стороны, . Из равенства правых частей двух последних соотношений следует, что

. (3.27)

3.10. Эллипсоид

Определение. Эллипсоидом называется поверхность второго порядка, которая в некоторой системе координат определяется уравнением

. (3.28)

Уравнение (3.28) называется каноническим уравнением эллипсоида.

Из уравнения (3.28) следует, что координатные плоскости являются плоскостями симметрии эллипсоида, а начало координат  центром симметрии. Числа
называются полуосями эллипсоида и представляют собой длины отрезков от начала координат до пересечения эллипсоида с осями координат. Эллипсоид представляет собой ограниченную поверхность, заключенную в параллелепипеде
,
,
.

Установим геометрический вид эллипсоида. Для этого выясним форму линий пересечения его плоскостями, параллельными координатным осям.

Для определенности рассмотрим линии пересечения эллипсоида с плоскостями
, параллельными плоскости
. Уравнение проекции линии пересечения на плоскость
получается из (3.28), если в нем положить
. Уравнение этой проекции имеет вид

. (3.29)

Если
, то (3.29) является уравнением мнимого эллипса и точек пересечения эллипсоида с плоскостью
нет. Отсюда и следует, что
. Если
, то линия (3.29) вырождается в точки, т. е. плоскости
касаются эллипсоида в точках
и
. Если
, то
и можно ввести обозначения

,
. (3.30)

Тогда уравнение (3.29) принимает вид

, (3.31)

т. е. проекция на плоскость
линии пересечения эллипсоида и плоскости
представляет собой эллипс с полуосями, которые определяются равенствами (3.30). Так как линия пересечения поверхности плоскостями, параллельными координатным, представляет собой проекцию, «поднятую» на высоту, то и сама линия пересечения является эллипсом.

При уменьшении значенияполуосииувеличиваются и достигают своего наибольшего значения при
, т. е. в сечении эллипсоида координатной плоскостью
получается самый большой эллипс с полуосями
и
.

Представление об эллипсоиде можно получить и другим образом. Рассмотрим на плоскости
семейство эллипсов (3.31) с полуосямии, определяемыми соотношениями (3.30) и зависящими от. Каждый такой эллипс является линией уровня, т. е. линией, в каждой точке которой значениеодинаково. «Подняв» каждый такой эллипс на высоту, получим пространственный вид эллипсоида.

Аналогичная картина получается и при пересечении данной поверхности плоскостями, параллельными координатным плоскостям
и
.

Таким образом, эллипсоид представляет собой замкнутую эллиптическую поверхность. В случае
эллипсоид является сферой.

Линия пересечения эллипсоида с любой плоскостью является эллипсом, так как такая линия представляет собой ограниченную линию второго порядка, а единственная ограниченная линия второго порядка  эллипс.

Это означает найти угол между этой прямой и ее проекцией на данную плоскость.

Пространственная модель иллюстрирующая задачу представлена на рисунке.

План решения задачи:
1. Из произвольной точки A a опускаем перпендикуляр на плоскость α ;
2. Определим точку встречи этого перпендикуляра с плоскостью α . Точка A α - ортогональная проекция A на плоскость α ;
3. Находим точку пересечения прямой a с плоскостью α . Точка a α - след прямой a на плоскости α ;
4. Проводим (A α a α ) - проекцию прямой a на плоскость α ;
5. Определяем действительную величину ∠Aa α A α , т. е. ∠φ .

Решение задачи найти угол между прямой и плоскостью может быть значительно упрощено, если определять не ∠φ между прямой и плоскостью, а дополняющий до 90° ∠γ . В этом случае отпадает необходимость в определении проекции точки A и проекции прямой a на плоскость α . Зная величину γ , вычисляем по формуле:

$ φ = 90° - γ $

a и плоскостью α , заданной параллельными прямыми m и n .

a α
Вращением вокруг горизонтали заданной точками 5 и 6 определяем натуральную величину ∠γ . Зная величину γ , вычисляем по формуле:

$ φ = 90° - γ $

Определение угла между прямой a и плоскостью α , заданной треугольником BCD.

Из произвольной точки на прямой a опускаем перпендикуляр к плоскости α
Вращением вокруг горизонтали заданной точками 3 и 4 определяем натуральную величину ∠γ . Зная величину γ , вычисляем по формуле.