Нахождение наибольшего и наименьшего значения. Наименьшее и наибольшее значения функции на отрезке

Наибольшее и наименьшее значения функции

понятия математического анализа. Значение, принимаемое функцией в некоторой точке множества, на котором эта функция задана, называется наибольшим (наименьшим) на этом множестве, если ни в какой другой точке множества функция не имеет большего (меньшего) значения. Н. и н. з. ф. по сравнению с её значениями во всех достаточно близких точках называются экстремумами (соответственно максимумами и минимумами) функции. Н. и н. з. ф., заданной на отрезке, могут достигаться либо в точках, где производная равна нулю, либо в точках, где она не существует, либо на концах отрезка. Непрерывная функция, заданная на отрезке, обязательно достигает на нём наибольшего и наименьшего значений; если же непрерывную функцию рассматривать на интервале (т. е. отрезке с исключенными концами), то среди её значений на этом интервале может не оказаться наибольшего или наименьшего. Например, функция у = x , заданная на отрезке , достигает наибольшего и наименьшего значений соответственно при x = 1 и x = 0 (т. е. на концах отрезка); если же рассматривать эту функцию на интервале (0; 1), то среди её значений на этом интервале нет ни наибольшего, ни наименьшего, так как для каждого x 0 всегда найдётся точка этого интервала, лежащая правее (левее) x 0 , и такая, что значение функции в этой точке будет больше (соответственно меньше), чем в точке x 0 . Аналогичные утверждения справедливы для функций многих переменных. См. также Экстремум .


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Наибольшее и наименьшее значения функции" в других словарях:

    Большой Энциклопедический словарь

    Понятия математического анализа. Значение, принимаемое функцией в некоторой точке множества, на котором эта функция задана, называется наибольшим (наименьшим) на этом множестве, если ни в какой другой точке функция не имеет большего (меньшего)… … Энциклопедический словарь

    Понятия матем. анализа. Значение, принимаемое функцией в пек рой точке множества, па к ром эта функция задана, наз. наибольшим (наименьшим) на этом множестве, если ни в какой другой точке функция не имеет большего (меньшего) значения … Естествознание. Энциклопедический словарь

    МАКСИМУМ И МИНИМУМ ФУНКЦИИ - соответственно наибольшее и наименьшее значения функции по сравнению с её значениями во всех достаточно близких точках. Точки максимума и минимума называются точками экстремума … Большая политехническая энциклопедия

    Наибольшее и соответственно наименьшее значения функции, принимающей действительные значения. Точку области определения рассматриваемой функции, в к рой она принимает максимум или минимум, наз. соответственно точкой максимума или точкой минимума… … Математическая энциклопедия

    Троичной функцией в теории функциональных систем и троичной логике называют функцию типа, где троичное множество, а неотрицательное целое число, которое называют арностью или местностью функции. Элементы множества цифровые… … Википедия

    Представление булевых функций нормальными формами (см. Булевых функций нормальные формы). простейшими относительно нек рой меры сложности. Обычно под сложностью нормальной формы понимается число букв в ней. В этом случае простейшая форма наз.… … Математическая энциклопедия

    Функция, получающая бесконечно малые приращения при бесконечно малых приращениях аргумента. Однозначная функция f (x) называется непрерывной при значении аргумента x0, если для всех значений аргумента х, отличающихся достаточно мало от x0 … Большая советская энциклопедия

    - (лат. maximum и minimum, буквально наибольшее и наименьшее) (матем.), наибольшее и наименьшее значения функции по сравнению с её значениями в достаточно близких точках. На рисунке функция у = f(х) имеет в точках x1 и х3 максимум, а в точке х2 … … Энциклопедический словарь

    - (от латинского maximum и minimum наибольшее и наименьшее) (математическое), наибольшее и наименьшее значения функции по сравнению с ее значениями в достаточно близких точках. Точки максимума и минимума называются точками экстремума … Современная энциклопедия

В этой статье я расскажу про алгоритм поиска наибольшего и наименьшего значения функции, точек минимума и максимума.

Из теории нам точно пригодится таблица производных и правила дифференцирования . Все это есть в этой табличке:

Алгоритм поиска наибольшего и наименьшего значения.

Мне удобнее объяснять на конкретном примере. Рассмотрим:

Пример: Найдите наибольшее значение функции y=x^5+20x^3–65x на отрезке [–4;0].

Шаг 1. Берем производную.

Y" = (x^5+20x^3–65x)" = 5x^4 + 20*3x^2 - 65 = 5x^4 + 60x^2 - 65

Шаг 2. Находим точки экстремума.

Точкой экстремума мы называем такие точки, в которых функция достигает своего наибольшего или наименьшего значения.

Чтобы найти точки экстремума, надо приравнять производную функции к нулю (y" = 0)

5x^4 + 60x^2 - 65 = 0

Теперь решаем это биквадратное уравнение и найденные корни есть наши точки экстремума.

Я решаю такие уравнения заменой t = x^2, тогда 5t^2 + 60t - 65 = 0.

Сократим уравнение на 5, получим: t^2 + 12t - 13 = 0

D = 12^2 - 4*1*(-13) = 196

T_(1) = (-12 + sqrt(196))/2 = (-12 + 14)/2 = 1

T_(2) = (-12 - sqrt(196))/2 = (-12 - 14)/2 = -13

Делаем обратную замену x^2 = t:

X_(1 и 2) = ±sqrt(1) = ±1
x_(3 и 4) = ±sqrt(-13) (исключаем, под корнем не может быть отрицательных чисел, если конечно речь не идет о комплексных числах)

Итого: x_(1) = 1 и x_(2) = -1 - это и есть наши точки экстремума.

Шаг 3. Определяем наибольшее и наименьшее значение.

Метод подстановки.

В условии нам был дан отрезок [b][–4;0]. Точка x=1 в этот отрезок не входит. Значит ее мы не рассматриваем. Но помимо точки x=-1 нам также надо рассмотреть левую и правую границу нашего отрезка, то есть точки -4 и 0. Для этого подставляем все эти три точки в исходную функцию. Заметьте исходную - это ту, которая дана в условии (y=x^5+20x^3–65x), некоторые начинают подставлять в производную...

Y(-1) = (-1)^5 + 20*(-1)^3 - 65*(-1) = -1 - 20 + 65 = [b]44
y(0) = (0)^5 + 20*(0)^3 - 65*(0) = 0
y(-4) = (-4)^5 + 20*(-4)^3 - 65*(-4) = -1024 - 1280 + 260 = -2044

Значит наибольшее значение функции это [b]44 и достигается оно в точки [b]-1, которая называется точкой максимума функции на отрезке [-4; 0].

Мы решили и получили ответ, мы молодцы, можно расслабиться. Но стоп! Вам не кажется, что считать y(-4) как-то слишком сложно? В условиях ограниченного времени лучше воспользоваться другим способом, я называю его так:

Через промежутки знакопостоянства.

Находятся эти промежутки для производной функции, то есть для нашего биквадратного уравнения.

Я делаю это следующим образом. Рисую направленный отрезок. Расставляю точки: -4, -1, 0, 1. Не смотря на то, что 1 не входит в заданный отрезок, ее все равно следует отметить для того, чтобы корректно определить промежутки знакопостоянства. Возьмем какое-нибудь число во много раз больше 1, допустим 100, мысленно подставим его в наше биквадратное уравнение 5(100)^4 + 60(100)^2 - 65. Даже ничего не считая становится очевидно, что в точке 100 функция имеет знак плюс. А значит и на промежутки от 1 до 100 она имеет знак плюс. При переходе через 1 (мы идем справа налево)функция сменит знак на минус. При переходе через точку 0 функция сохранит свой знак, так как это лишь граница отрезка, а не корень уравнения. При переходе через -1 функция опять сменит знак на плюс.

Из теории мы знаем, что там, где производная функции (а мы именно для нее это и чертили) меняет знак с плюса на минус (точка -1 в нашем случае) функция достигает своего локального максимума (y(-1)=44, как была посчитано ранее) на данном отрезке (это логически очень понятно, функция перестала возрастать, так как достигла своего максимума и начала убывать).

Соответственно, там где производная функции меняет знак с минуса на плюс , достигается локальный минимум функции . Да, да, мы также нашли точку локального минимума это 1, а y(1) - это минимальное значение функции на отрезке, допустим от -1 до +∞. Обратите огромное внимание, что это лишь ЛОКАЛЬНЫЙ МИНИМУМ, то есть минимум на определенном отрезке. Так как действительный (глобальный) минимум функция достигнет где-то там, в -∞.

На мой взгляд первый способ проще теоретически, а второй проще с точки зрения арифметических действий, но намного сложнее с точки зрения теории. Ведь иногда бывают случаи, когда функция не меняет знак при переходе через корень уравнения, да и вообще можно запутаться с этими локальными, глобальными максимумами и минимумами, хотя Вам так и так придется это хорошо освоить, если вы планируете поступать в технический ВУЗ (а для чего иначе сдавать профильное ЕГЭ и решать это задание). Но практика и только практика раз и навсегда научит Вас решать такие задачи. А тренироваться можете на нашем сайте. Вот .

Если появились какие-то вопросы, или что-то непонятно - обязательно спросите. Я с радостью Вам отвечу, и внесу изменения, дополнения в статью. Помните мы делаем этот сайт вместе!

В этой статье я расскажу о том, как применять умение находить к исследованию функции: к нахождению ее наибольшего или наименьшего значения. А затем мы решим несколько задач из Задания В15 из Открытого банка заданий для .

Как обычно, сначала вспомним теорию.

В начале любого исследования функции находим ее

Чтобы найти наибольшее или наименьшее значение функции , нужно исследовать, на каких промежутках функция возрастает, и на каких убывает.

Для этого надо найти производную функции и исследовать ее промежутки знакопостоянства, то есть промежутки, на которых производная сохраняет знак.

Промежутки, на которых производная функции положительна, являются промежутками возрастания функции.

Промежутки, на которых производная функции отрицательна, являются промежутками убывания функции.

1 . Решим задание В15 (№ 245184)

Для его решения будем следовать такому алгоритму:

а) Найдем область определения функции

б) Найдем производную функции .

в) Приравняем ее к нулю.

г) Найдем промежутки знакопостоянства функции.

д) Найдем точку, в которой функция принимает наибольшее значение.

е) Найдем значение функции в этой точке.

Подробное решение этого задания я рассказываю в ВИДЕОУРОКЕ:

Вероятно, Ваш браузер не поддерживается. Чтобы использовать тренажёр "Час ЕГЭ", попробуйте скачать
Firefox

2 . Решим задание В15 (№282862)

Найдите наибольшее значение функции на отрезке

Очевидно, что наибольшее значение на отрезке функция принимает в точке максимума, при х=2. Найдем значение функции в этой точке:

Ответ: 5

3 . Решим задание В15 (№245180):

Найдите наибольшее значение функции

1. title="ln5>0">, , т.к. title="5>1">, поэтому это число не влияет на знак неравенства.

2. Т.к по область определения исходной функции title="4-2x-x^2>0">, следовательно знаменатель дроби всегда больще нуля и дробь меняет знак только в нуле числителя.

3. Числитель равен нулю при . Проверим, принадлежит ли ОДЗ функции. Для этого проверим, выполняется ли условие title="4-2x-x^2>0"> при .

Title="4-2(-1)-{(-1)}^2>0">,

значит, точка принадлежит ОДЗ функции

Исследуем знак производной справа и слева от точки :

Мы видим, что наибольшее значение функция принимает в точке . Теперь найдем значение функции при :

Замечание 1. Заметим, что в этой задаче мы не находили область определения функции: мы только зафиксировали ограничения и проверили, принадлежит ли точка, в которой производная равна нулю области определения функции. В данной задаче этого оказалось достаточно. Однако, так бывает не всегда. Это зависит от задачи.

Замечание 2. При исследовании поведения сложной функции можно пользоваться таким правилом:

  • если внешняя функция сложной функции возрастающая, то функция принимает наибольшее значение в той же точке, в которой внутренняя функция принимает наибольшее значение. Это следует из определения возрастающей функции: функция возрастает на промежутке I, если большему значению аргумента из этого промежутка соответствует большее значение функции.
  • если внешняя функция сложной функции убывающая, то функция принимает наибольшее значение в той же точке, в которой внутренняя функция принимает наименьшее значение. Это следует из определения убывающей функции: функция убывает на промежутке I, если большему значению аргумента из этого промежутка соответствует меньшее значение функции

В нашем примере внешняя функция - возрастает на всей области определения. Под знаком логарифма стоит выражение - квадратный трехчлен, который при отрицательном старшем коэффициенте принимает наибольшее значение в точке . Далее подставляем это значение х в уравнение функции и находим ее наибольшее значение.

Миниатюрная и довольно простая задача из разряда тех, которые служат спасательным кругом плавающему студенту. На природе сонное царство середины июля, поэтому самое время устроиться с ноутбуком на пляже. Ранним утром заиграл солнечный зайчик теории, чтобы в скором времени сфокусироваться на практике, которая, несмотря на заявленную лёгкость, содержит осколки стекла в песке. В этой связи рекомендую добросовестно рассмотреть немногочисленные примеры этой странички. Для решения практических заданий необходимо уметь находить производные и понимать материал статьи Интервалы монотонности и экстремумы функции .

Сначала коротко о главном. На уроке о непрерывности функции я приводил определение непрерывности в точке и непрерывности на интервале. Образцово-показательное поведение функции на отрезке формулируется похожим образом. Функция непрерывна на отрезке если:

1) она непрерывна на интервале ;
2) непрерывна в точке справа и в точке слева .

Во втором пункте речь зашла о так называемой односторонней непрерывности функции в точке. Существует несколько подходов к её определению, но я буду придерживаться начатой ранее линии:

Функция непрерывна в точке справа , если она определена в данной точке и её правосторонний предел совпадает со значением функции в данной точке: . Она же непрерывна в точке слева , если определена в данной точке и её левосторонний предел равен значению в этой точке:

Представьте, что зелёные точки – это гвозди, на которых закреплена волшебная резинка:

Мысленно возьмите красную линию в руки. Очевидно, что как бы далеко мы не растягивали график вверх и вниз (вдоль оси ), функция всё равно останется ограниченной – изгородь сверху, изгородь снизу, и наше изделие пасётся в загоне. Таким образом, непрерывная на отрезке функция ограничена на нём . В курсе матанализа этот вроде бы простой факт констатируется и строго доказывается первой теоремой Вейерштрасса. …Многих раздражает, что в математике нудно обосновываются элементарные утверждения, однако в этом есть важный смысл. Предположим, некий житель махрового средневековья вытягивал график в небо за пределы видимости вот это вставляло. До изобретения телескопа ограниченность функции в космосе была вовсе не очевидна! Действительно, откуда вы знаете, что нас ждёт за горизонтом? Ведь когда-то и Земля считалась плоской, поэтому сегодня даже обыденная телепортация требует доказательства =)

Согласно второй теореме Вейерштрасса , непрерывная на отрезке функция достигает своей точной верхней грани и своей точной нижней грани .

Число также называют максимальным значением функции на отрезке и обозначают через , а число – минимальным значением функции на отрезке с пометкой .

В нашем случае:

Примечание : в теории распространены записи .

Грубо говоря, наибольшее значение находится там, где самая высокая точка графика, а наименьшее – где самая низкая точка.

Важно! Как уже заострялось внимание в статье об экстремумах функции , наибольшее значение функции и наименьшее значение функции НЕ ТО ЖЕ САМОЕ , что максимум функции и минимум функции . Так, в рассматриваемом примере число является минимумом функции, но не минимальным значением.

Кстати, а что происходит вне отрезка ? Да хоть потоп, в контексте рассматриваемой задачи это нас совершенно не интересует. Задание предполагает лишь нахождение двух чисел и всё!

Более того, решение чисто аналитическое, следовательно, чертежа делать не надо !

Алгоритм лежит на поверхности и напрашивается из приведённого рисунка:

1) Находим значения функции в критических точках , которые принадлежат данному отрезку .

Ловите ещё одну плюшку: здесь отпадает необходимость проверять достаточное условие экстремума, поскольку, как только что было показано, наличие минимума или максимума ещё не гарантирует , что там минимальное или максимальное значение. Демонстрационная функция достигает максимума и волей судьбы это же число является наибольшим значением функции на отрезке . Но, понятно, такое совпадение имеет место далеко не всегда.

Итак, на первом шаге быстрее и проще вычислить значения функции в критических точках, принадлежащих отрезку, не заморачиваясь есть в них экстремумы или нет.

2) Вычисляем значения функции на концах отрезка.

3) Среди найденных в 1-м и 2-м пунктах значений функции выбираем самое маленькое и самое большое число, записываем ответ.

Садимся на берег синего моря и бьём пятками по мелководью:

Пример 1

Найти наибольшее и наименьшее значения функции на отрезке

Решение :
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

Вычислим значение функции во второй критической точке:

2) Вычислим значения функции на концах отрезка:

3) «Жирные» результаты получены с экспонентами и логарифмами, что существенно затрудняет их сравнение. По сей причине вооружимся калькулятором либо Экселем и вычислим приближённые значения, не забывая, что :

Вот теперь всё понятно.

Ответ :

Дробно-рациональный экземпляр для самостоятельного решения:

Пример 6

Найти максимальное и минимальное значения функции на отрезке

На практике довольно часто приходится использовать производную для того, чтобы вычислить самое большое и самое маленькое значение функции. Мы выполняем это действие тогда, когда выясняем, как минимизировать издержки, увеличить прибыль, рассчитать оптимальную нагрузку на производство и др., то есть в тех случаях, когда нужно определить оптимальное значение какого-либо параметра. Чтобы решить такие задачи верно, надо хорошо понимать, что такое наибольшее и наименьшее значение функции.

Yandex.RTB R-A-339285-1

Обычно мы определяем эти значения в рамках некоторого интервала x , который может в свою очередь соответствовать всей области определения функции или ее части. Это может быть как отрезок [ a ; b ] , так и открытый интервал (a ; b) , (a ; b ] , [ a ; b) , бесконечный интервал (a ; b) , (a ; b ] , [ a ; b) либо бесконечный промежуток - ∞ ; a , (- ∞ ; a ] , [ a ; + ∞) , (- ∞ ; + ∞) .

В этом материале мы расскажем, как вычисляется наибольшее и наименьшее значение явно заданной функции с одной переменной y=f(x) y = f (x) .

Основные определения

Начнем, как всегда, с формулировки основных определений.

Определение 1

Наибольшее значение функции y = f (x) на некотором промежутке x – это значение m a x y = f (x 0) x ∈ X , которое при любом значении x x ∈ X , x ≠ x 0 делает справедливым неравенство f (x) ≤ f (x 0) .

Определение 2

Наименьшее значение функции y = f (x) на некотором промежутке x – это значение m i n x ∈ X y = f (x 0) , которое при любом значении x ∈ X , x ≠ x 0 делает справедливым неравенство f(X f (x) ≥ f (x 0) .

Данные определения являются достаточно очевидными. Еще проще можно сказать так: наибольшее значение функции – это ее самое большое значение на известном интервале при абсциссе x 0 , а наименьшее – это самое маленькое принимаемое значение на том же интервале при x 0 .

Определение 3

Стационарными точками называются такие значения аргумента функции, при которых ее производная обращается в 0 .

Зачем нам нужно знать, что такое стационарные точки? Для ответа на этот вопрос надо вспомнить теорему Ферма. Из нее следует, что стационарная точка – это такая точка, в которой находится экстремум дифференцируемой функции (т.е. ее локальный минимум или максимум). Следовательно, функция будет принимать наименьшее или наибольшее значение на некотором промежутке именно в одной из стационарных точек.

Еще функция может принимать наибольшее или наименьшее значение в тех точках, в которых сама функция является определенной, а ее первой производной не существует.

Первый вопрос, который возникает при изучении этой темы: во всех ли случаях мы может определить наибольшее или наименьшее значение функции на заданном отрезке? Нет, мы не можем этого сделать тогда, когда границы заданного промежутка будут совпадать с границами области определения, или если мы имеем дело с бесконечным интервалом. Бывает и так, что функция в заданном отрезке или на бесконечности будет принимать бесконечно малые или бесконечно большие значения. В этих случаях определить наибольшее и/или наименьшее значение не представляется возможным.

Более понятными эти моменты станут после изображения на графиках:

Первый рисунок показывает нам функцию, которая принимает наибольшее и наименьшее значения (m a x y и m i n y) в стационарных точках, расположенных на отрезке [ - 6 ; 6 ] .

Разберем подробно случай, указанный на втором графике. Изменим значение отрезка на [ 1 ; 6 ] и получим, что наибольшее значение функции будет достигаться в точке с абсциссой в правой границе интервала, а наименьшее – в стационарной точке.

На третьем рисунке абсциссы точек представляют собой граничные точки отрезка [ - 3 ; 2 ] . Они соответствуют наибольшему и наименьшему значению заданной функции.

Теперь посмотрим на четвертый рисунок. В нем функция принимает m a x y (наибольшее значение) и m i n y (наименьшее значение) в стационарных точках на открытом интервале (- 6 ; 6) .

Если мы возьмем интервал [ 1 ; 6) , то можно сказать, что наименьшее значение функции на нем будет достигнуто в стационарной точке. Наибольшее значение нам будет неизвестно. Функция могла бы принять наибольшее значение при x , равном 6 , если бы x = 6 принадлежала интервалу. Именно этот случай нарисован на графике 5 .

На графике 6 наименьшее значение данная функция приобретает в правой границе интервала (- 3 ; 2 ] , а о наибольшем значении мы не можем сделать определенных выводов.

На рисунке 7 мы видим, что функция будет иметь m a x y в стационарной точке, имеющей абсциссу, равную 1 . Наименьшего значения функция достигнет на границе интервала с правой стороны. На минус бесконечности значения функции будут асимптотически приближаться к y = 3 .

Если мы возьмем интервал x ∈ 2 ; + ∞ , то увидим, что заданная функция не будет принимать на нем ни наименьшего, ни наибольшего значения. Если x стремится к 2 , то значения функции будут стремиться к минус бесконечности, поскольку прямая x = 2 – это вертикальная асимптота. Если же абсцисса стремится к плюс бесконечности, то значения функции будут асимптотически приближаться к y = 3 . Именно этот случай изображен на рисунке 8 .

В этом пункте мы приведем последовательность действий, которую нужно выполнить для нахождения наибольшего или наименьшего значения функции на некотором отрезке.

  1. Для начала найдем область определения функции. Проверим, входит ли в нее заданный в условии отрезок.
  2. Теперь вычислим точки, содержащиеся в данном отрезке, в которых не существует первой производной. Чаще всего их можно встретить у функций, аргумент которых записан под знаком модуля, или у степенных функций, показатель которых является дробно рациональным числом.
  3. Далее выясним, какие стационарные точки попадут в заданный отрезок. Для этого надо вычислить производную функции, потом приравнять ее к 0 и решить получившееся в итоге уравнение, после чего выбрать подходящие корни. Если у нас не получится ни одной стационарной точки или они не будут попадать в заданный отрезок, то мы переходим к следующему шагу.
  4. Определим, какие значения будет принимать функция в заданных стационарных точках (если они есть), или в тех точках, в которых не существует первой производной (если они есть), либо же вычисляем значения для x = a и x = b .
  5. 5. У нас получился ряд значений функции, из которых теперь нужно выбрать самое больше и самое маленькое. Это и будут наибольшее и наименьшее значения функции, которые нам нужно найти.

Посмотрим, как правильно применить этот алгоритм при решении задач.

Пример 1

Условие: задана функция y = x 3 + 4 x 2 . Определите ее наибольшее и наименьшее значение на отрезках [ 1 ; 4 ] и [ - 4 ; - 1 ] .

Решение:

Начнем с нахождения области определения данной функции. В этом случае ей будет множество всех действительных чисел, кроме 0 . Иными словами, D (y) : x ∈ (- ∞ ; 0) ∪ 0 ; + ∞ . Оба отрезка, заданных в условии, будут находиться внутри области определения.

Теперь вычисляем производную функции согласно правилу дифференцирования дроби:

y " = x 3 + 4 x 2 " = x 3 + 4 " · x 2 - x 3 + 4 · x 2 " x 4 = = 3 x 2 · x 2 - (x 3 - 4) · 2 x x 4 = x 3 - 8 x 3

Мы узнали, что производная функции будет существовать во всех точках отрезков [ 1 ; 4 ] и [ - 4 ; - 1 ] .

Теперь нам надо определить стационарные точки функции. Сделаем это с помощью уравнения x 3 - 8 x 3 = 0 . У него есть только один действительный корень, равный 2 . Он будет стационарной точкой функции и попадет в первый отрезок [ 1 ; 4 ] .

Вычислим значения функции на концах первого отрезка и в данной точке, т.е. для x = 1 , x = 2 и x = 4:

y (1) = 1 3 + 4 1 2 = 5 y (2) = 2 3 + 4 2 2 = 3 y (4) = 4 3 + 4 4 2 = 4 1 4

Мы получили, что наибольшее значение функции m a x y x ∈ [ 1 ; 4 ] = y (2) = 3 будет достигнуто при x = 1 , а наименьшее m i n y x ∈ [ 1 ; 4 ] = y (2) = 3 – при x = 2 .

Второй отрезок не включает в себя ни одной стационарной точки, поэтому нам надо вычислить значения функции только на концах заданного отрезка:

y (- 1) = (- 1) 3 + 4 (- 1) 2 = 3

Значит, m a x y x ∈ [ - 4 ; - 1 ] = y (- 1) = 3 , m i n y x ∈ [ - 4 ; - 1 ] = y (- 4) = - 3 3 4 .

Ответ: Для отрезка [ 1 ; 4 ] - m a x y x ∈ [ 1 ; 4 ] = y (2) = 3 , m i n y x ∈ [ 1 ; 4 ] = y (2) = 3 , для отрезка [ - 4 ; - 1 ] - m a x y x ∈ [ - 4 ; - 1 ] = y (- 1) = 3 , m i n y x ∈ [ - 4 ; - 1 ] = y (- 4) = - 3 3 4 .

См. на рисунке:


Перед тем как изучить данный способ, советуем вам повторить, как правильно вычислять односторонний предел и предел на бесконечности, а также узнать основные методы их нахождения. Чтобы найти наибольшее и/или наименьшее значение функции на открытом или бесконечном интервале, выполняем последовательно следующие действия.

  1. Для начала нужно проверить, будет ли заданный интервал являться подмножеством области определения данной функции.
  2. Определим все точки, которые содержатся в нужном интервале и в которых не существует первой производной. Обычно они бывают у функций, где аргумент заключен в знаке модуля, и у степенных функций с дробно рациональным показателем. Если же эти точки отсутствуют, то можно переходить к следующему шагу.
  3. Теперь определим, какие стационарные точки попадут в заданный промежуток. Сначала приравняем производную к 0 , решим уравнение и подберем подходящие корни. Если у нас нет ни одной стационарной точки или они не попадают в заданный интервал, то сразу переходим к дальнейшим действиям. Их определяет вид интервала.
  • Если интервал имеет вид [ a ; b) , то нам надо вычислить значение функции в точке x = a и односторонний предел lim x → b - 0 f (x) .
  • Если интервал имеет вид (a ; b ] , то нам надо вычислить значение функции в точке x = b и односторонний предел lim x → a + 0 f (x) .
  • Если интервал имеет вид (a ; b) , то нам надо вычислить односторонние пределы lim x → b - 0 f (x) , lim x → a + 0 f (x) .
  • Если интервал имеет вид [ a ; + ∞) , то надо вычислить значение в точке x = a и предел на плюс бесконечности lim x → + ∞ f (x) .
  • Если интервал выглядит как (- ∞ ; b ] , вычисляем значение в точке x = b и предел на минус бесконечности lim x → - ∞ f (x) .
  • Если - ∞ ; b , то считаем односторонний предел lim x → b - 0 f (x) и предел на минус бесконечности lim x → - ∞ f (x)
  • Если же - ∞ ; + ∞ , то считаем пределы на минус и плюс бесконечности lim x → + ∞ f (x) , lim x → - ∞ f (x) .
  1. В конце нужно сделать вывод на основе полученных значений функции и пределов. Здесь возможно множество вариантов. Так, если односторонний предел равен минус бесконечности или плюс бесконечности, то сразу понятно, что о наименьшем и наибольшем значении функции сказать ничего нельзя. Ниже мы разберем один типичный пример. Подробные описания помогут вам понять, что к чему. При необходимости можно вернуться к рисункам 4 - 8 в первой части материала.
Пример 2

Условие: дана функция y = 3 e 1 x 2 + x - 6 - 4 . Вычислите ее наибольшее и наименьшее значение в интервалах - ∞ ; - 4 , - ∞ ; - 3 , (- 3 ; 1 ] , (- 3 ; 2) , [ 1 ; 2) , 2 ; + ∞ , [ 4 ; + ∞) .

Решение

Первым делом находим область определения функции. В знаменателе дроби стоит квадратный трехчлен, который не должен обращаться в 0:

x 2 + x - 6 = 0 D = 1 2 - 4 · 1 · (- 6) = 25 x 1 = - 1 - 5 2 = - 3 x 2 = - 1 + 5 2 = 2 ⇒ D (y) : x ∈ (- ∞ ; - 3) ∪ (- 3 ; 2) ∪ (2 ; + ∞)

Мы получили область определения функции, к которой принадлежат все указанные в условии интервалы.

Теперь выполним дифференцирование функции и получим:

y " = 3 e 1 x 2 + x - 6 - 4 " = 3 · e 1 x 2 + x - 6 " = 3 · e 1 x 2 + x - 6 · 1 x 2 + x - 6 " = = 3 · e 1 x 2 + x - 6 · 1 " · x 2 + x - 6 - 1 · x 2 + x - 6 " (x 2 + x - 6) 2 = - 3 · (2 x + 1) · e 1 x 2 + x - 6 x 2 + x - 6 2

Следовательно, производные функции существуют на всей области ее определения.

Перейдем к нахождению стационарных точек. Производная функции обращается в 0 при x = - 1 2 . Это стационарная точка, которая находится в интервалах (- 3 ; 1 ] и (- 3 ; 2) .

Вычислим значение функции при x = - 4 для промежутка (- ∞ ; - 4 ] , а также предел на минус бесконечности:

y (- 4) = 3 e 1 (- 4) 2 + (- 4) - 6 - 4 = 3 e 1 6 - 4 ≈ - 0 . 456 lim x → - ∞ 3 e 1 x 2 + x - 6 = 3 e 0 - 4 = - 1

Поскольку 3 e 1 6 - 4 > - 1 , значит, m a x y x ∈ (- ∞ ; - 4 ] = y (- 4) = 3 e 1 6 - 4 . Это не дает нам возможности однозначно определить наименьшее значение функции. Мы можем только сделать вывод, что внизу есть ограничение - 1 , поскольку именно к этому значению функция приближается асимптотически на минус бесконечности.

Особенностью второго интервала является то, что в нем нет ни одной стационарной точки и ни одной строгой границы. Следовательно, ни наибольшего, ни наименьшего значения функции мы вычислить не сможем. Определив предел на минус бесконечности и при стремлении аргумента к - 3 с левой стороны, мы получим только интервал значений:

lim x → - 3 - 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 - 0 3 e 1 (x + 3) (x - 3) - 4 = 3 e 1 (- 3 - 0 + 3) (- 3 - 0 - 2) - 4 = = 3 e 1 (+ 0) - 4 = 3 e + ∞ - 4 = + ∞ lim x → - ∞ 3 e 1 x 2 + x - 6 - 4 = 3 e 0 - 4 = - 1

Значит, значения функции будут расположены в интервале - 1 ; + ∞

Чтобы найти наибольшее значение функции в третьем промежутке, определим ее значение в стационарной точке x = - 1 2 , если x = 1 . Также нам надо будет знать односторонний предел для того случая, когда аргумент стремится к - 3 с правой стороны:

y - 1 2 = 3 e 1 - 1 2 2 + - 1 2 - 6 - 4 = 3 e 4 25 - 4 ≈ - 1 . 444 y (1) = 3 e 1 1 2 + 1 - 6 - 4 ≈ - 1 . 644 lim x → - 3 + 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 - 3 + 0 + 3 (- 3 + 0 - 2) - 4 = = 3 e 1 (- 0) - 4 = 3 e - ∞ - 4 = 3 · 0 - 4 = - 4

У нас получилось, что наибольшее значение функция примет в стационарной точке m a x y x ∈ (3 ; 1 ] = y - 1 2 = 3 e - 4 25 - 4 . Что касается наименьшего значения, то его мы не можем определить. Все, что нам известно, – это наличие ограничения снизу до - 4 .

Для интервала (- 3 ; 2) возьмем результаты предыдущего вычисления и еще раз подсчитаем, чему равен односторонний предел при стремлении к 2 с левой стороны:

y - 1 2 = 3 e 1 - 1 2 2 + - 1 2 - 6 - 4 = 3 e - 4 25 - 4 ≈ - 1 . 444 lim x → - 3 + 0 3 e 1 x 2 + x - 6 - 4 = - 4 lim x → 2 - 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 (2 - 0 + 3) (2 - 0 - 2) - 4 = = 3 e 1 - 0 - 4 = 3 e - ∞ - 4 = 3 · 0 - 4 = - 4

Значит, m a x y x ∈ (- 3 ; 2) = y - 1 2 = 3 e - 4 25 - 4 , а наименьшее значение определить невозможно, и значения функции ограничены снизу числом - 4 .

Исходя из того, что у нас получилось в двух предыдущих вычислениях, мы можем утверждать, что на интервале [ 1 ; 2) наибольшее значение функция примет при x = 1 , а найти наименьшее невозможно.

На промежутке (2 ; + ∞) функция не достигнет ни наибольшего, ни наименьшего значения, т.е. она будет принимать значения из промежутка - 1 ; + ∞ .

lim x → 2 + 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 (2 + 0 + 3) (2 + 0 - 2) - 4 = = 3 e 1 (+ 0) - 4 = 3 e + ∞ - 4 = + ∞ lim x → + ∞ 3 e 1 x 2 + x - 6 - 4 = 3 e 0 - 4 = - 1

Вычислив, чему будет равно значение функции при x = 4 , выясним, что m a x y x ∈ [ 4 ; + ∞) = y (4) = 3 e 1 14 - 4 , и заданная функция на плюс бесконечности будет асимптотически приближаться к прямой y = - 1 .

Сопоставим то, что у нас получилось в каждом вычислении, с графиком заданной функции. На рисунке асимптоты показаны пунктиром.

Это все, что мы хотели рассказать о нахождении наибольшего и наименьшего значения функции. Те последовательности действий, которые мы привели, помогут сделать необходимые вычисления максимально быстро и просто. Но помните, что зачастую бывает полезно сначала выяснить, на каких промежутках функция будет убывать, а на каких возрастать, после чего можно делать дальнейшие выводы. Так можно более точно определить наибольшее и наименьшее значение функции и обосновать полученные результаты.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter