Последовательность развития материи согласно теории большого взрыва. Большой взрыв. Космический микроволновой фон

Отвечает астрофизик, доктор физико-математических наук, главный научный сотрудник Института астрономии РАН (ИНАСАН) Николай Чугай :

— В астрофизике под Большим взрывом понимают взрывной процесс, в котором родилась наша Вселенная. В основе этой идеи лежит наблюдаемый факт разбегания галактик, обнаруженный в конце двадцатых годов прошлого века американским астрофизиком Хабблом . Разбегание галактик означает, что в прошлом вселенная была плотной.

В сороковых годах XX века стало понятно, — это прежде всего пришло в голову российскому астрофизику Георгию Гамову , который работал в США — что Вселенная в далёком прошлом была не только плотной, но и очень горячей, настолько, что в ней могли происходить термоядерные реакции синтеза химических элементов из смеси протонов, нейтронов и электронов. Ядро водорода состоит из одного протона, поэтому можно сказать, что, согласно мысли Гамова, вначале был только водород. Это и в современной Вселенной наиболее распространённый химический элемент. Всё остальное, в том числе и гелий, — следующий по распространённости элемент — возникло в результате ядерных реакций. Гамов рассчитал условия, при которых в первые несколько минут после взрыва образовалось современное количество гелия, и пришёл к выводу, что за время жизни Вселенной первичное горячее излучение должно было остыть до 5 градусов по шкале Кельвина (ноль этой шкалы соответствует температуре -273 градуса по Цельсию). В 1964 году эта догадка блестяще подтвердилась: американские радиоастрономы Пензиас и Вилсон обнаружили это излучение в сантиметровом диапазоне как однородный фон неба. Позднейшие измерения со спутников показали что температура этого фона (реликтового излучения) равна 2,7 градуса Кельвина.

Реликтовое излучение — решаюший аргумент в пользу теории Большого взрыва. Свечение реликтового излучения даёт нам понять очень многие вещи, в том числе и зарождение галактик и скоплений галактик. Дело в том, что сначала Вселенная была абсолютно однородной. Но в процессе расширения небольшие начальные возмущения плотности стали усиливаться благодаря гравитационному самопритяжению, подобно тому, как планета притягивается к Солнцу, камень падает на землю. Сила гравитации заставляет эти неоднородности становиться ещё плотнее. Так образовались галактики и скопления галактик, звёзды и планеты.




Согласно данной теории Вселенная появилась в виде горячего сгустка сверхплотной материи, после чего она начала расширяться и остывать. На самом первом этапе эволюции Вселенная находилась в сверхплотном состоянии и представляла собой -глюонную плазму. Если протоны и нейтроны сталкивались и образовывали более тяжелые ядра, время их существования было ничтожно мало. При следующем столкновении с какой-либо быстрой частицей они сразу же распадались на элементарные компоненты.

Примерно 1 миллиард лет назад началось формирование галактик, в тот момент Вселенная стала отдаленно напоминать то, что мы можем увидеть сейчас. Через 300 тысяч лет после Большого взрыва она настолько остыла, что электроны стали прочно удерживаться ядрами, вследствие чего появились стабильные атомы, которые не распадались сразу же после соударения с другим ядром.

Образование частиц

Образование частиц началось в результате расширения Вселенной. Ее дальнейшее охлаждение привело к образованию ядер гелия, которое произошло в результате первичного нуклеосинтеза. С момента Большого взрыва должно было пройти около трех минут, прежде чем Вселенная остыла, а энергия соударения уменьшалась настолько, что частицы стали образовывать устойчивые ядра. В первые три минуты Вселенная представляла собой раскаленное море элементарных частиц.

Первичное образование ядер продолжалось очень недолго, после первых трех минут частицы отдались друг от друга так, что столкновения между ними стали крайне редки. В этот короткий период первичного нуклеосинтеза появился дейтерий - тяжелый изотоп водорода, ядро которого содержит один протон и один . Одновременно с дейтерием образовались: гелий-3, гелий-4 и незначительное количество лития-7. Все более тяжелые элементы появились на стадии формирования звезд.

После рождения Вселенной

Примерно через одну стотысячную долю секунды от начала зарождения Вселенной кварки соединились в элементарные частицы. С этого момента Вселенная стала остывающим морем элементарных частиц. Вслед за этим начался процесс, который называют великим объединением фундаментальным сил. Тогда во Вселенной присутствовали энергии, соответствующие максимальным энергиям, которые могут быть получены в современных ускорителях. После началось скачкообразное инфляционное расширение, одновременно с ним исчезли античастицы.

Наука, изучающая Вселенную, как единое целое и Метагалактику – как часть Вселенной, называется космологией . Георгий Гамов – американский физик–теоретик предполагает, что наша Вселенная, т.е. Метагалактика, родилась в горячем состоянии с температурой около 10 32 К . Эту модель Гамов назвал «Космологией большого взрыва».

Над этой моделью Гамов работал 10 лет. В 1948 году он опубликовал теорию «Большого взрыва ». Согласно теории "Большого взрыва", наша Вселенная расширяется. Расширение началось 15 млрд. лет назад из исходного очень горячего состояния. Согласно этой теории, в начальном моменте материя Вселенной находилась в состоянии физического вакуума. Физический вакуум был в неустойчивом, возбужденном состоянии, так как обладал огромной энергией: w= , где г/см 3 - плотность материи вакуума, а с – скорость света. Энергия создает огромное давление . В момент времени 10 43 с., из-за огромного давления начинается инфляция вакуума, т.е. вакуум начинает терять энергию. От момента 10 ─43 с. до 10 ─35 с материя вакуума расширяется экспоненциально и его размер увеличивается в 10 50 раза. В промежуток времени от 10 ─35 с до 10 ─32 с происходит фазовый переход , т. е. «Большой взрыв», в ходе которого вакуумное состояние материи посредством туннельного эффекта превращается в горячую плотную Вселенную с температурой 10 32 К, с материей в виде электромагнитных волн (радиоволны, инфракрасные, видимые, ультрафиолетовые, рентгеновские и гамма лучей).

Таким образом, наша Вселенная родилась в виде огненного шара, который назывался «Илем» (греч. йлем - первичная материя). Илем представлял собой нейтральный газ из электромагнитных волн и элементарных частиц.

По причине быстрого расширения, материя Вселенной охлаждается и начинается появление частиц из радиации. В начале количество частиц и античастиц было равным. Затем происходит спонтанное нарушение симметрии, это приводит к преобладанию частиц над античастицами. В первые секунды после взрыва рождаются адроны (барионы и мезоны). По истечению времени приблизительно в 1000 с после взрыва температура становится равной примерно 10 10 К и нарушается равенство концентрации протонов и нейтронов по той причине, что время жизни протонов равно 10 31 лет , а время жизни нейтронов длится около 800 с . Нейтроны распадаются и устанавливаются соотношения: 77% протонов и 22% нейтронов. В промежутке времени от 1000 с до 10000 с происходит образование легких атомов водорода и гелия. На образование ядра гелия уходят почти все нейтроны, и устанавливается следующее соотношение: 77% водорода и 22% гелия .

Интервал времени формирования Вселенной ученые делят на четыре “эры” в соответствии с преобладающей формой существования материи.


1. Эра адронов продолжается 0,0001 секунд. Адронная эра - это эра тяжелых частиц. Плотность частиц равна ρ>10 14 г/см 3 , а температура Т>10 12 К. В конце эры происходит внезапное нарушение симметрии, равенство частиц и античастиц. Причиной нарушения симметрии считается не сохранение барионного заряда. В результате, на каждый миллион (10 6) античастиц приходится миллион плюс одна (10 6 +1) частица.

2. Эра лептонов . Продолжительность эры от 0,0001с до 10с, температура от 10 10 К до 10 12 К, плотность от 10 4 до 10 14 г/см 3 . В эту эру основную роль играют легкие частицы , принимающие участие в реакциях между протонами и нейтронами. Происходят взаимные превращения протонов в нейтроны и наоборот. Постепенно накапливаются мю-мезоны, электроны, нейтрино и их античастицы. В конце эры лептонов происходит аннигиляция частиц и античастиц . Таким образом, во Вселенной античастицы исчезают, остаются частицы и излучения. Вселенная становится прозрачной для электронных нейтрино. Эти нейтрино сохранились и до нашего времени.

3. Эра радиации. Еепродолжительность 70 млн. лет, температура уменьшается от 10 10 К до 3000 К, а плотность от 10 4 до 10 -21 г/см 3 . К началу эры радиации количество протонов и нейтронов примерно равно. При уменьшении температуры количество протонов становится больше из-за распада нейтронов. В конце эры возникают условия для образования первичных атомов, в результате чего начинается новая эра - эра вещества.

4. Эра вещества. Эта эра наступила через 70 млн. лет после «Большого взрыва» с температурой около 3000К и плотностью порядка 10 4 г/см 3 . В начале эры плотность радиации и плотность вещества (частиц) была равной - около 10 −26 г/см 3 , они находились в условиях теплового равновесия. При равновесии эволюционный процесс не происходит , т.е. материя не может усложняться. Однако по мере расширения Вселенной, охлаждения вещества и охлаждения радиации происходят по разным законам. Температура вещества уменьшается обратно пропорционально квадрату размера Вселенной: Т вещества ~1/R 2 . Температура радиации уменьшается обратно пропорционально размеру Вселенной: Т радиация ~1/R. Следовательно, вещество остывает значительно быстрее . Вселенная от равновесного состояния переходит к неравновесному состоянию. Силы гравитации порождают неустойчивость , а турбулентное движение создает ударные волны . Все это приводит к фрагментации материи Вселенной. Образуются маленькие и большие газовые облака, состоящие из радиации, элементарных частиц, атомов водорода и гелия. В интервале времени, от 3 ч. до 3 миллионов лет, из маленьких облаков образуются звезды, а из больших облаков образуются целые галактики.

Механизм возникновение звёзд американский ученый Трюмплер (1930) первым объяснил тем, что газопылевое облако сжимается и нагревается, давление и температура внутри растут, замедляя сжатие. При 20 миллионов градусов начинается ядерная реакция , происходит взрыв, и возникает новая звезда. Наше Солнце проделало такой путь примерно за 1 млн. лет, около 5 млрд. лет назад.

Даже современные ученые не могут с точностью сказать, что было во Вселенной до Большого взрыва. Существует несколько гипотез, приоткрывающих завесу тайны над одним из самых сложных вопросов мироздания.

Происхождение материального мира

До XX века существовало только две Сторонники религиозной точки зрения считали, что мир был создан богом. Ученые, наоборот, отказывались признавать рукотворность Вселенной. Физики и астрономы были сторонниками идеи о том, что космос существовал всегда, мир был статичен и все останется таким же, как миллиарды лет назад.

Однако ускорившийся научный прогресс на рубеже веков привел к тому, что у исследователей появились возможности для изучения внеземных просторов. Некоторые из них первыми попытались ответить на вопрос, что было во Вселенной до Большого взрыва.

Исследования Хаббла

XX столетие разрушило многие теории прошлых эпох. На освободившемся месте появились новые гипотезы, объяснившие доселе непонятные тайны. Все началось с того, что ученые установили факт расширения Вселенной. Сделано это было Эдвином Хабблом. Он обнаружил, что далекие галактики отличаются по своему свету от тех космических скоплений, которые находились ближе к Земле. Открытие этой закономерности легло в основу закона расширения Эдвина Хаббла.

Большой взрыв и происхождение Вселенной были изучены, когда стало ясно, что все галактики «убегают» от наблюдателя, в какой бы точке он ни был. Как это можно было объяснить? Раз галактики движутся, значит, их толкает вперед некая энергия. Кроме того, физики вычислили, что все миры когда-то находились в одной точке. Из-за некоего толчка они начали двигаться во все стороны с невообразимой скоростью.

Это явление и получило название «Большой взрыв». И происхождение Вселенной было объяснено именно с помощью теории об этом давнем событии. Когда оно случилось? Физики определили скорость движения галактик и вывели формулу, по которой они вычислили, когда произошел первоначальный «толчок». Точных цифр никто назвать не возьмется, но приблизительно это явление имело место около 15 миллиардов лет назад.

Появление теории Большого взрыва

Тот факт, что все галактики являются источниками света, означает, что при Большом взрыве выделилось огромное количество энергии. Именно она породила ту самую яркость, которую миры теряют по ходу своего отдаления от эпицентра произошедшего. Теория Большого взрыва впервые была доказана американскими астрономами Робертом Вильсоном и Арно Пензиасом. Они обнаружили электромагнитное реликтовое излучение, температура которого равнялась трем градусам по кельвиновской шкале (то есть -270 по Цельсию). Эта находка подтвердила идею о том, что сначала Вселенная была крайне горячей.

Теория Большого взрыва ответила на многие вопросы, сформулированные в XIX веке. Однако теперь появились новые. Например, что было во Вселенной до Большого взрыва? Почему она так однородна, в то время как при таком огромном выбросе энергии вещество должно разлететься во все стороны неравномерно? Открытия Вильсона и Арно поставили под сомнения классическую Евклидову геометрию, так как было доказано, что пространство имеет нулевую кривизну.

Инфляционная теория

Новые поставленные вопросы показывали, что современная теория возникновения мира отрывочна и неполна. Однако долгое время казалось, что продвинуться дальше открытого в 60-е годы будет невозможно. И только совсем недавние исследования ученых позволили сформулировать новый важный принцип для теоретической физики. Это было явление сверхбыстрого инфляционного расширения Вселенной. Оно было изучено и описано с помощью квантовой теории поля и общей теории относительности Эйнштейна.

Так что было во Вселенной до Большого взрыва? Современная наука называет этот период «инфляцией». Вначале было только поле, которое заполняло все воображаемое пространство. Его можно сравнить со снежком, пущенным вниз по склону снежной горы. Ком будет катиться вниз и увеличиваться в размерах. Точно так же поле из-за случайных колебаний на протяжении невообразимого времени меняло свою структуру.

Когда образовалась однородная конфигурация, произошла реакция. В ней и заключаются самые большие загадки Вселенной. Что было до Большого взрыва? Инфляционное поле, которое совсем не походило на нынешнюю материю. После реакции начался рост Вселенной. Если продолжить аналогию со снежным комом, то вслед за первым из них вниз покатились другие снежки, также увеличивавшиеся в размерах. Момент Большого взрыва в этой системе можно сравнить с той секундой, когда огромная глыба рухнула в пропасть и, наконец, столкнулась с землей. В это мгновение выделилось колоссальное количество энергии. Она не может иссякнуть до сих пор. Именно за счет продолжения реакции от взрыва наша Вселенная растет и сегодня.

Материя и поле

Сейчас Вселенная состоит из невообразимого количества звезд и других космических тел. Эта совокупность материи источает огромную энергию, что противоречит физическому закону сохранения энергии. О чем он гласит? Суть этого принципа сводится к тому, что на протяжении бесконечного времени сумма энергии в системе остается неизменной. Но как это может сочетаться с нашей Вселенной, которая продолжает расширяться?

Инфляционная теория смогла ответить на этот вопрос. Крайне редко разгадываются подобные загадки Вселенной. Что было до Большого взрыва? Инфляционное поле. После возникновения мира на его место пришла привычная нам материя. Однако помимо нее во Вселенной также существует которое обладает отрицательной энергией. Свойства этих двух сущностей противоположны. Так компенсируется энергия, исходящая от частиц, звезд, планет и другой материи. Эта взаимосвязь также объясняет, почему Вселенная до сих пор не превратилась в черную дыру.

Когда Большой взрыв только произошел, мир был слишком мал, чтобы в нем что-то могло коллапсировать. Теперь же, когда Вселенная расширилась, на отдельных ее участках появились локальные черные дыры. Их гравитационное поле поглощает все окружающее. Из него не может выбраться даже свет. Собственно из-за этого подобные дыры становятся черными.

Расширение Вселенной

Даже несмотря на теоретическое обоснование инфляционной теории, до сих пор непонятно, как выглядела Вселенная до Большого взрыва. Человеческое воображение не может представить себе этой картины. Дело в том, что инфляционное поле является нематериальным. Оно не поддается объяснению привычными законами физики.

Когда произошел Большой взрыв, инфляционное поле начало расширяться в темпе, который превысил скорость света. Согласно физическим показателям, во Вселенной нет ничего материального, что могло бы двигаться быстрее этого показателя. Свет распространяется по существующему миру с запредельными цифрами. Инфляционное поле же распространилось с еще большей скоростью, как раз в силу своей нематериальной природы.

Современное состояние Вселенной

Текущий период эволюции Вселенной как нельзя лучше подходит для существования жизни. Ученые затрудняются определить, сколько будет продолжаться этот временной отрезок. Но если кто и брался за такие расчеты, то получавшиеся цифры были никак не меньше сотен миллиардов лет. Для одной человеческой жизни подобный отрезок настолько велик, что даже в математическом исчислении его приходится записывать с помощью использования степеней. Настоящее изучено гораздо лучше, чем предыстория Вселенной. Что было до Большого взрыва, в любом случае останется только предметом теоретических изысканий и смелых расчетов.

В материальном мире даже время остается величиной относительной. Например, квазары (вид астрономических объектов), существующие на расстоянии 14 миллиардов световых лет от Земли, отстают от нашего привычного «сейчас» на те самые 14 миллиардов световых лет. Этот временной разрыв колоссален. Его сложно определить даже математически, не говоря уже о том, что отчетливо представить себе подобное с помощью человеческого воображения (даже самого пылкого) просто невозможно.

Современная наука может теоретически объяснить себе всю жизнь нашего материального мира, начиная с первых долей секунд его существования, когда только что произошел Большой взрыв. Полная история Вселенной дополняется до сих пор. Астрономы открывают новые удивительные факты с помощью модернизированного и улучшенного исследовательского оборудования (телескопов, лабораторий и т. д.).

Однако существуют и так и не понятые явления. Таким белым пятном, например, является и ее темная энергия. Сущность этой скрытой массы продолжает будоражить сознание самых образованных и передовых физиков современности. Кроме того, так и не возникло единой точки зрения о причинах того, почему во Вселенной частиц все-таки больше, чем античастиц. По этому поводу было сформулировано несколько фундаментальных теорий. Некоторые из этих моделей пользуются наибольшей популярностью, но ни одна из них пока не принята международным научным сообществом в качестве

В масштабе всеобщего знания и колоссальных открытий XX столетий эти пробелы кажутся совсем незначительными. Но история науки с завидной регулярностью показывает, что объяснение таких «малых» фактов и явлений становится основой для всего представления человечества о дисциплине в целом (в данном случае речь идет об астрономии). Поэтому будущим поколениям ученых, безусловно, будет чем заняться и что открывать в области познания природы Вселенной.

После загадочной космологической сингулярности следует не менее таинственная планковская эра (0 -10 -43 с). Трудно сказать какие процессы происходили в этот краткий миг новорождённой Вселенной. Но точно известно, что к концу планковского момента гравитационное воздействие отделилось от трёх фундаментальных сил, соединенных в единую группу Великого объединения.

Для того, чтобы описать более ранний момент, необходима новая теория, частью которой может стать модель петлевой квантовой гравитации и теория струн. Получается, что планковская эра, как и космологическая сингулярность, составляет сверхмалый по длительности, но значительный по научному весу пробел в доступных знаниях ранней Вселенной. Так же в пределах планковского времени существовали своеобразные флуктации пространства и времени. Для описания этого квантового хаоса можно использовать образ пенящихся квантовых ячеек пространства-времени.

По сравнению с планковской эрой дальнейшие события предстают перед нами в ярком и понятном свете. В период с 10 -43 с до 10 -35 с в молодой Вселенной уже действовали силы гравитации и Великого объединения. В этот период сильное, слабое и электромагнитное воздействия были единым целым и составляли силовое поле Великого объединения.

Когда с момента Большого взрыва прошло 10 -35 с, Вселенная достигла температуры 10 29 К. В этот момент сильное взаимодействие отделилось от электрослабого. Это привело к нарушению симметрии, которое происходило по-разному в разных частях Вселенной. Есть вероятность, что Вселенная разделилась на части, которые были отгорожены друг от друга дефектами пространства-времени. Так же там могли существовать и другие дефекты - космические струны или магнитные монополи. Однако, сегодня мы не можем этого видеть из-за другого разделения силы Великого объединения - космологической инфляции.

В то время Вселенная была заполнена газом из гравитонов - гипотетических квантов поля тяготения и бозонов силы Большого объединения. В это же время почти не существовала разница между лептонами и кварками.

Когда в некоторых частях Вселенной произошло разделение сил, возник ложный вакуум. Энергия застряла на высоком уровне, вынуждая пространство удваиваться каждые 10 -34 с. Таким образом, Вселенная от квантовых масштабов(одна миллиардная триллионной триллионной доли сантиметра) перешла к размерам шара с диаметром около 10 см. В результате эпохи Великого объединения произошёл фазовый переход первичной материи, который сопровождался нарушением однородности её плотности. Эпоха Великого объединения закончилась приблизительно в 10 ?34 секунд с момента Большого Взрыва, когда плотность материи составляла 10 74 г/смі, а температура 10 27 K. В этот момент времени от первичного взаимодействия отделяется сильное ядерное взаимодействие, которое начинает играть важную роль в создавшихся условиях. Это отделение привело к следующему фазовому переходу и масштабному расширению Вселенной, которое привело к изменению плотности вещества и распределению его по Вселенной.

Одна из причин, почему мы так мало знаем о состоянии Вселенной до инфляции, заключается в том, что дальнейшие события очень сильно её изменили, разбросав частицы до инфляционного возраста по самым дальним уголкам Вселенной. Поэтому, даже если эти частицы и сохранились, обнаружить их в современном веществе достаточно сложно.

С быстрым развитием Вселенной происходят большие изменения, и в след за периодом Великого объединения идёт эпоха инфляции (10 -35 - 10 -32). Для этой эпохи характерно сверхбыстрое расширения молодой Вселенной, то есть инфляция. В этот краткий миг Мироздание представляло собой океан ложного вакуума с высокой плотностью энергии, благодаря чему и стало возможно расширение. При этом параметры вакуума постоянно менялись из-за квантовых всплесков - флуктации (пространство-временное вспенивание).

Инфляция объясняет природу взрыва при Большом взрыве, то есть почему происходило стремительное расширение Вселенной. Основой для описания этого явления послужили общая теория относительности Эйнштейна и квантовая теория поля. Для того, что описать это явление, физики построили гипотетическое инфлаторное поле, которое заполняло всё пространство. Благодаря случайным колебаниям оно принимало разные значения в произвольных пространственных областях и в разные моменты времени. Затем в инфлаторном поле образовалась однородная конфигурация критического размера, после чего пространственная область, занятая флуктацией, начала быстро увеличиваться в размерах. Из-за стремления инфлаторного поля занять положение, в котором его энергия минимальна, процесс расширения обрёл нарастающий характер, в результате которого Вселенная начала увеличиваться в размерах. В момент расширения(10 -34) начал распадаться ложный вакуум, в результате чего начинают образоваться частицы и античастицы больших энергий.

В истории Вселенной наступает адронная эра, важной особенностью которой является существования частиц и античастиц. Согласно современным представлениям в первые микросекунды после Большого взрыва, Вселенная находилась в состоянии кварк-глюонной плазмы. Кварки являются составными частями всех адронов (протонов и нейтронов), а нейтральные частицы глюоны-переносчики сильного взаимодействия, которые обеспечивают слипание кварков в адроны. В первые моменты Вселенной эти частицы только образовывались и находились в свободном, газообразном, состоянии.

Хромоплазму кварков и глюонов обычно сравнивают с жидким состоянием взаимодействующей материи. В такой фазе кварки и глюоны освобождаются от адронной материи и могут свободно перемещаться по всему плазменному пространству, в результате чего образуется цветопроводность.

Не смотря на экстремально высокие температуры, кварки были достаточно связаны между собой, а их движение напоминало скорее движение атомов в жидкости, чем в газе. Так же при таких условиях происходит ещё один фазовый переход, при котором лёгкие кварки, составляющие вещество, становятся безмассовыми.

Наблюдения реликтового фона показали, что первоначальное изобилие частиц по сравнению с количеством античастиц составляло ничтожно малую долю от общего числа. И именно этих избыточных протонов хватило для создания вещества Вселенной.

Некоторые учёные полагают, что в адронной эре существовали и скрытие вещества. Носитель скрытой массы неизвестен, но наиболее вероятными считаются такие элементарные частицы как аксионы.

В процессе развития взрыва температура падала и через одну десятую секунды достигала 3*10 10 градусов Цельсия. Через одну секунду - десять тысяч миллионов градусов, а через тринадцать секунд- три тысячи миллионов. Этого было уже достаточно для того, чтобы электроны и позитроны начали аннагилировать быстрее. Энергия, выделяющаяся при аннагиляции, постепенно замедляла скорость охлаждения Вселенной, но температура продолжала падать.

Период с 10-4 - 10 с принято называть эрой лептонов. Когда энергия частиц и фотонов понизилась в сотню раз, вещество заполнили лептоны-электроны и позитроны. Лептонная эра начинается с распада последних адронов в мюоны и мюонное нейтрино, а кончается через несколько секунд, когда энергия фотонов резко уменьшилась и генерация электрон-позитронных пар прекратилась.

Примерно через одну сотую секунды после Большого взрыва температура Вселенной была равна 10 11 градусов Цельсия. Это намного горячее, чем в центре любой известной нам звезды. Эта температура так высока, что ни один из компонентов обычного вещества, атомы и молекулы, не могли существовать. Вместо этого молодая Вселенная состояла из элементарных частиц. Одними из этих частиц были электроны, - отрицательно заряженные частицы, которые образую внешние части всех атомов. Другими частицами были позитроны,- положительно заряженные частицы с массой, в точности равной массе электрона. Помимо этого существовало нейтрино различных типов- призрачных частиц, не имеющих ни массы, ни электрического заряда. Но нейтрино и антинейтрино не аннигилировали друг с другом, потому что эти частицы очень слабо взаимодействуют между собой и другими частицами. Поэтому они до сих пор должны встречаться вокруг нас, и они могло бы стать хорошим способ проверки модели горячей ранней Вселенной. Однако энергии этих частиц сейчас слишком малы для их наблюдения.

Во время эры лептонов имелись такие частицы как протоны и нейтроны. И наконец, во Вселенной был свет, который, согласно, квантовой теории, состоит из фотонов. В пропорциональном отношении, на один нейтрон и протон приходилось тысяча миллионов электронов. Все эти частицы непрерывно рождались из чистой энергии, а затем аннигилировали, образовывали другие виды частиц. Плотность в ранней Вселенной при столь высоких температурах была в четыре тысячи миллионов раз больше, чем у воды.

Как говорилось ранее, именно в этот период происходит интенсивное рождение в ядерных реакциях различных типов призрачного нейтрино, которое называют реликтовым.

Начинается радиационная эра, в начале которой Вселенная вступает в эпоху излучения. В начала эры (10 с) излучение интенсивно взаимодействовало с заряженными частицами протонов и электронов. Из-за падения температуры фотоны охлаждались, и в результате многочисленных рассеяний на удаляющихся частицах уносилась часть их энергии.

Примерно через сто секунд после Большого взрыва температура падает до тысячи миллионов градусов, что соответствует температуре самых горячих звёзд. При таких условиях энергии протонов и нейтронов уже недостаточно для сопротивления сильному ядерному притяжению, и они начинают объединяться друг с друг с другом, образуя ядра дейтерия- тяжёлого водорода. Затем ядра дейтерия присоединяют другие нейтроны и протоны и превращаются в ядра гелия. После образуются более тяжёлые элементы - литий и бериллий. Первичное образование атомных ядер рождающегося вещества продолжалось недолго. После трёх минут частицы разлетелись так далеко друг от друга, что столкновения стали редким явлением. Согласно горячей модели Большого взрыва, около четвёртой части протонов и нейтронов должно было превратиться в атомы гелия, водорода и других элементов. Оставшиеся элементарные частицы распались на протоны, представляющие ядра обычного водорода.

Через несколько часов после Большого взрыва образование гелия и других элементов прекратилось. В течение миллиона лет Вселенная просто продолжала расширяться и в ней почти больше ничего не происходило. Существующая в тот период материя начала расширяться и охлаждаться. Значительно позже, через сотни тысяч лет температура упала до нескольких тысяч градусов, и энергии электронов и ядер стало недостаточно для преодоления действующего между ними электромагнитного притяжения. Они начали сталкиваться между собой, образуя первые атомы водорода и гелия (рис 2).