Разложить в ряд фурье e x. Разложение в ряд Фурье четных и нечетных функций Неравенство Бесселя Равенство Парсеваля

Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем


Разложение в ряд Фурье четных и нечетных функций Функция f(x), определенная на отрезке \-1, где I > 0, называется четной, если График четной функции симметричен относительно оси ординат. Функция f(x), определенная на отрезке J), где I > 0, называется нечетной, если График нечетной функции симметричен относительно начала координат. Пример. а) Функция является четной на отрезке |-jt, jt), так как для всех х е б) Функция является нечетной, так как Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем в) Функция f(x)=x2-x, где не принадлежит ни к четным, ни к нечетным функциям, так как Пусть функция f(x), удовлетворяющая условиям теоремы 1, является четной на отрезке х|. Тогда для всех т.е. /(ж) cos nx является четной функцией, a f(x)sinnx - нечетной. Поэтому коэффициенты Фурье четной функции /(ж) будут равны Следовательно, ряд Фурье четной функции имеет вид 00 Если f(x) - нечетная функция на отрезке [-тг, ir|, то произведение f(x)cosnx будет нечетной функцией, а произведение f(x) sin пх - четной функцией. Поэтому будем иметь Таким образом, ряд Фурье нечетной функции имеет вид Пример 1. Разложить в ряд Фурье на отрезке -х ^ х ^ п функцию 4 Так как эта функция четная и удовлетворяет условиям теоремы 1, то ее ряд Фурье имеет вид Находим коэффициенты Фурье. Имеем Применяя дважды интегрирование по частям, получим, что Значит, ряд Фурье данной функции выглядит так: или, в развернутом виде, Это равенство справедливо для любого х € , так как в точках х = ±ir сумма ряда совпадает со значениями функции f(x) = х2, поскольку Графики функции f(x) = х и суммы полученного ряда даны на рис. Замечание. Этот ряд Фурье позволяет найти сумму одного из сходящихся числовых рядов, а именно, при х = 0 получаем, что Пример 2. Разложить в ряд Фурье на интервале функцию /(х) = х. Функция /(х) удовлетворяет условиям теоремы 1, следовательно ее можно разложить в ряд Фурье, который в силу нечетности этой функции будет иметь вид Интегрируя по частям, находим коэффициенты Фурье Следовательно, ряд Фурье данной функции имеет вид Это равенство имеет место для всех х В точках х - ±тг сумма ряда Фурье не совпадает со значениями функции /(х) = х, так как она равна Вне отрезка [-*, я-] сумма ряда является периодическим продолжением функции /(х) = х; ее график изображен на рис. 6. § 6. Разложение функции, заданной на отрезке, в ряд по синусам или по косинусам Пусть ограниченная кусочно-монотонная функция / задана на отрезке . Значения этой функции на отрезке 0| можно доопределить различным образом. Например, можно определить функцию / на отрезке тс] так, чтобы /. В этом случае говорят, что) «продолжена на отрезок 0] четным образом»; ее ряд Фурье будет содержать только косинусы. Если же функцию /(ж) определить на отрезке [-л-, тс] так, чтобы /(, то получится нечетная функция, и тогда говорят, что / «продолжена на отрезок [-*, 0] нечетным образом»; в этом случае се ряд Фурье будет содержать только синусы. Итак, каждую ограниченную кусочно-монотонную функцию /(ж), определенную на отрезке , можно разложить в ряд Фурье и по синусам, и по косинусам. Пример 1. Функцию разложить в ряд Фурье: а) по косинусам; б) по синусам. М Данная функция при ее четном и нечетном продолжениях в отрезок |-х,0) будет ограниченной и кусочно-монотонной. а) Продолжим /(z) в отрезок 0) а) Продолжим j\x) в отрезок (-тг,0| четным образом (рис. 7), тогда ее ряд Фурье i будет иметь вид П=1 где коэффициенты Фурье равны соответственно для Следовательно, б) Продолжим /(z) в отрезок [-x,0] нечетным образом (рис. 8). Тогда ее ряд Фурье §7. Ряд Фурье для функции с произвольным периодом Пусть функция fix) является периодической с периодом 21,1 ^ 0. Для разложения ее в ряд Фурье на отрезке где I > 0, сделаем замену переменной, положив х = jt. Тогда функция F(t) = / ^tj будет периодической функцией аргумента t с периодом и ее можно разложить на отрезке в ряд Фурье Возвращаясь к переменной ж, т. е. положив, получим Все теоремы, справедливые для рядов Фурье периодических функций с периодом 2тг, остаются в силе и для периодических функций с произвольным периодом 21. В частности, сохраняет свою силу и достаточный признак разложимости функции в ряд Фурье. Пример 1. Разложить в ряд Фурье периодическую функцию с периодом 21, заданную на отрезке [-/,/] формулой (рис.9). Так как данная функция четная, то ее ряд Фурье имеет вид Подставляя в ряд Фурье найденные значения коэффициентов Фурье, получим Отметим одно важное свойство периодических функций. Теорема 5. Если функция имеет период Т и интегрируема, то для любого числа а выполняется равенство m. е. интеграл no отрезку, длина которого равна периоду Т, имеет одно и то же значение независимо от положения этого отрезка на числовой оси. В самом деле, Делаем замену переменной во втором интеграле, полагая. Это дает и следовательно, Геометрически это свойство означает, что в случае площади заштрихованных на рис. 10 областей равны между собой. В частности, для функции f(x) с периодом получим при Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем Пример 2. Функция x является периодической с периодом В силу нечетности данной функции без вычисления интегралов можно утверждать, что при любом Доказанное свойство, в частности, показывает, что коэффициенты Фурье периодической функции f(x) с периодом 21 можно вычислять по формулам где а - произвольное действительное число (отметим, что функции cos - и sin имеют период 2/). Пример 3. Разложить в ряд Фурье заданную на интервале функцию с периодом 2х (рис. 11). 4 Найдем коэффициенты Фурье данной функции. Положив в формулах найдем, что для Следовательно, ряд Фурье будет выглядеть так: В точке х = jt (точка разрыва первого рода) имеем §8. Комплексная запись ряда Фурье В этом параграфе используются некоторые элементы комплексного анализа (см. главу XXX, где все, производимые здесь действия с комплексными выражениями, строго обоснованы). Пусть функция f(x) удовлетворяет достаточным условиям разложимости в ряд Фурье. Тогда на отрезке ж] ее можно представить рядом вида Используя формулы Эйлера Подставляя эти выражения в ряд (1) вместо cos пх и sin пху будем иметь Введем следующие обозначения Тогда ряд (2) примет вид Таким образом, ряд Фурье (1) представлен в комплексной форме (3). Найдем выражения коэффициентов через интегралы. Имеем Аналогично находим Окончательно формулы для с„, с_п и со можно записать так: . . Коэффициенты с„ называются комплексными коэффициентами Фурье функции Для периодической функции с периодом) комплексная форма ряда Фурье примет вид где коэффициенты Сп вычисляются по формулам Сходимость рядов (3) и (4) понимается так: ряды (3) и (4) называются сходящимися для данного значения ж, если существуют пределы Пример. Разложить в комплексный ряд Фурье функцию периода Данная функция удовлетворяет достаточным условиям разложимости в ряд Фурье. Пусть Найдем комплексные коэффициенты Фурье этой функции. Имеем для нечетных для четных n, или,короче. Подставляя значения), окончательно получим Заметим, что этот ряд можно записать и так: Ряды Фурье по общим ортогональным системам функций 9.1. Ортогональные системы функций Обозначим через множество всех (действительных) функций, определенных и интегрируемых на отрезке [а, 6] с квадратом, т. е. таких, для которых существует интеграл В частности, все функции f(x), непрерывные на отрезке [а, 6], принадлежат 6], и значения их интегралов Лебега совпадают со значениями интегралов Римана. Определение. Система функций, где, называется ортогональной на отрезке [а, Ь\, если Условие (1) предполагает, в частности, что ни одна из функций не равна тождественно нулю. Интеграл понимается в смысле Лебега. и назовем величину нормой функции Если в ортогональной системе для всякого п имеем, то система функций называется ортонормированной. Если система {у>„(ж)} ортогональна, то система Пример 1. Тригонометрическая система ортогональна на отрезке. Система функций является ортонормированной системой функций на, Пример 2. Косинус-система и синус-система ортонормирована. Введем обозначение являются ортогональными на отрезке (0, f|, но не ортонормированными (при I Ф- 2). так как их нормы COS Пример 3. Многочлены, определяемые равенством, называются многочленами (полиномами) Лежандра. При п = 0 имеем Можно доказать, что функции образуют ортонормированную систему функций на отрезке. Покажем, например, ортогональность полиномов Лежандра. Пусть т > п. В этом случае, интегрируя п раз по частям, находим поскольку для функции t/m = (z2 - I)m все производные до порядка m - I включительно обращаются в нуль на концах отрезка [-1,1). Определение. Система функций {pn(x)} называется ортогональной на интервале (а, Ь) свесом р(х), если: 1) для всех п = 1,2,... существуют интегралы Здесь предполагается, что весовая функция р(х) определена и положительна всюду на интервале (а, Ь) за возможным исключением конечного числа точек, где р(х) может обращаться в нуль. Выполнив дифференцирование в формуле (3), находим. Можно показать, что многочлены Чебышева-Эрмита ортогональны на интервале Пример 4. Система функций Бесселя {jL(pix)^ ортогональна на интервале нули функции Бесселя Пример 5. Рассмотрим многочлены Чебышева-Эрмита, которые могут быть определены при помощи равенства. Ряд Фурье по ортогональной системе Пусть ортогональная система функций в интервале (a, 6) и пусть ряд (cj = const) сходится на этом интервале к функции f(x): Умножая обе части последнего равенства на - фиксировано) и интегрируя по ж от а до 6, в силу ортогональности системы получим, что Эта операция имеет, вообще говоря, чисто формальный характер. Тем не менее, в некоторых случаях, например, когда ряд (4) сходится равномерно, все функции непрерывны и интервал (a, 6) конечен, эта операция законна. Но для нас сейчас важна именно формальная трактовка. Итак, пусть задана функция. Образуем числа с* по формуле (5) и напишем Ряд, стоящий в правой части, называется рядом Фурье функции f(x) относительно системы {^п(я)}- Числа Сп называются коэффициентами Фурье функции f(x) по этой системе. Знак ~ в формуле (6) означает лишь, что числа Сп связаны с функцией /(ж) формулой (5) (при этом не предполагается, что ряд справа вообще сходится, а тем более сходится к функции f(x)). Поэтому естественно возникает вопрос: каковы свойства этого ряда? В каком смысле он «представляет» функцию f(x)? 9.3. Сходимость в среднем Определение. Последовательность, сходится к элементу ] в среднем, если норма в пространстве Теорема 6. Если последовательность } сходится равномерно, то она сходится и в среднем. М Пусть последовательность {)} сходится равномерно на отрезке [а, Ь] к функции /(х). Это означает, что для всякого при всех достаточно больших п имеем Следовательно, откуда вытекает наше утверждение. Обратное утверждение неверно: последовательность {} может сходиться в среднем к /(х), но не быть равномерно сходящейся. Пример. Рассмотрим последовательность пх Легко видеть, что Но эта сходимость не равномерна: существует е, например, такое, что сколь бы большим ни было л, на отрезке , Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем и пусть Обозначим через с* коэффициенты Фурье функции /(х) по ортонормированной системе ь Рассмотрим линейную комбинацию где n ^ 1 - фиксированное целое число, и найдем значения постоянных, при которых интеграл принимает минимальное значение. Запишем его подробнее Интефируя почленно, в силу ортонормированности системы получим Первые два слагаемых в правой части равенства (7) не зависят, а третье слагаемое неотрицательно. Поэтому интеграл (*) принимает минимальное значение при ак = ск Интеграл называют средним квадратичным приближением функции /(х) линейной комбинацией Тп(х). Таким образом, среднее квадратичное приближение функции/\ принимает минимальное значение, когда. когда Тп(х) есть 71-я частичная сумма ряда Фурье функции /(х) по системе {. Полагая ак = ск, из (7) получаем Равенство (9) называется тождеством Бесселя. Так как его левая часть неотрицательна, то из него следует неравенство Бесселя Поскольку я здесь произвольно, то неравенство Бесселя можно представить в усиленной форме т. е. для всякой функции / ряд из квадратов коэффициентов Фурье этой функции по ортонормированной системе } сходится. Так как система ортонормирована на отрезке [-х, тг], то неравенство (10) в переводе на привычную запись тригонометрического ряда Фурье дает соотношение do справедливое для любой функции /(х) с интегрируемым квадратом. Если f2(x) интегрируема, то в силу необходимого условия сходимости ряда в левой части неравенства (11) получаем, что. Равенство Парсе валя Для некоторых систем {^„(х)} знак неравенства в формуле (10) может быть заменен (для всех функций /(х) 6 Ч) знаком равенства. Получаемое равенство называется равенством Парсеваля-Стеклова (условием полноты). Тождество Бесселя (9) позволяет записать условие (12) в равносильной форме Тем самым выполнение условия полноты означает, что частичные суммы Sn(x) ряда Фурье функции /(х) сходятся к функции /(х) в среднем, т.е. по норме пространства 6]. Определение. Ортонормированная система { называется полной в Ь2[ау Ь], если всякую функцию можно с любой точностью приблизить в среднем линейной комбинацией вида с достаточно большим числом слагаемых, т. е. если для всякой функции/(х) € Ь2[а, Ь\ и для любого е > 0 найдется натуральное число nq и числа а\, а2у..., такие, что No Из приведенных рассуждений следует Теорема 7. Если ортонормированием система } полна в пространстве ряд Фурье всякой функции / по этой системе сходится к f(x) в среднем, т. е. по норме Можно показать, что тригонометрическая система полна в пространстве, Отсюда следует утверждение. Теорема 8. Если функция /о ее тригонометрический ряд Фурье сходится к ней в среднем. 9.5. Замкнутые системы. Полнота и замкнутость систем Определение. Ортонормированная система функций \, называется замкнутой, если в пространстве Li\a, Ь) не существует отличной от нуля функции, ортогональной ко всем функциям В пространстве L2\a, Ь\ понятия полноты и замкнутости ортонормированных систем совпадают. Упражнения 1. Разложите в ряд Фурье в интервале (-я-, ж) функцию 2. Разложите в ряд Фурье в интервале (-тг, тг) функцию 3. Разложите в ряд Фурье в интервале (-тг, тг) функцию 4. Разложите в ряд Фурье в интервале (-jt, тг) функцию 5. Разложите в ряд Фурье в интервале (-тг, тг) функцию f(x) = ж + х. 6. Разложите в ряд Фурье в интервале (-jt, тг) функцию п 7. Разложите в ряд Фурье в интервале (-тг, ж) функцию /(х) = sin2 х. 8. Разложите в ряд Фурье в интервале (-тг, jt) функцию f(x) = у 9. Разложите в ряд Фурье в интервале (-тт, -к) функцию /(х) = | sin х|. 10. Разложите в ряд Фурье в интервале (-я-, тг) функцию /(х) = §. 11. Разложите в ряд Фурье в интервале (-тг, тг) функцию f(x) = sin §. 12. Разложите в ряд Фурье функцию f(x) = п -2х, заданную в интервале (0, х), продолжив ее в интервал (-х, 0): а) четным образом; б) нечетным образом. 13. Разложите в ряд Фурье по синусам функцию /(х) = х2, заданную в интервале (0, х). 14. Разложите в ряд Фурье функцию /(х) = 3-х, заданную в интервале (-2,2). 15. Разложите в ряд Фурье функцию f(x) = |х|, заданную в интервале (-1,1). 16. Разложите в ряд Фурье по синусам функцию f(x) = 2х, заданную в интервале (0,1).

Функцию f (x ), определëнную на отрезке и являющуюся на этом отрезке кусочно-монотонной и ограниченной, можно разложить в ряд Фурье двумя способами. Для этого достаточно представить продолжение функции на промежуток [–l , 0]. Если продол­жение f (x ) на [–l , 0] чётное (симметричное относительно оси ординат), то ряд Фурье можно записать по формулам (1.12–1.13), то есть по косинусам. Если продолжить функцию f (x ) на [–l , 0] нечётным образом, то разложение функции в ряд Фурье будет представлено формулами (1.14–1.15), то есть по синусам. При этом оба ряда будут иметь в интервале (0, l ) одну и ту же сумму.

Пример. Разложить в ряд Фурье функцию y = x , заданную на промежутке (см. рис.1.4).

Решение .

a ). Разложение в ряд по косинусам. Строим чётное продолжение функции в соседний промежуток [–1, 0]. График функции вместе с её чётным продолжением на [–1, 0 ] и последующим продолжением (по периоду T = 2) на всю ось 0x показан на рис.1.5.

Так как l = 1, то ряд Фурье для данной функции при чётном разложе­нии будет иметь вид

(1.18)

,

В результате получим при

На всей оси 0x ряд сходится к функции, изображенной на рис.1.4.

2). Разложение в ряд по синусам. Строим нечётное продолжение функции в соседний промежуток [–1, 0]. График функции вместе с её нечётным продолжением на [–1, 0] и последующим периодическим продолжением на всю числовую ось 0x показан на рис.1.6.

При нечëтном разложении

, (1.20)

.

Поэтому ряд Фурье по синусам для данной функции при
будет иметь вид

В точке
сумма ряда будет равна нулю, хотя исходная функция равна 1. Это обусловлено тем, что при таком периодическом продолжении точкаx = 1 становится точкой разрыва.

Из сравнения выражений (1.19) и (1.21) следует, что скорость сходимости ряда (1.19) выше, чем ряда (1.21): она определяется в первом случае множителем
, а во втором случае множителем ­1/n . Поэтому разложение в ряд по косинусам в данном случае пред­почтительнее.

В общем случае можно показать, что если функция f (x ) не обращается в нуль хотя бы на одном из концов промежутка , то предпочтительнее еë разложение в ряд по косинусам. Это обусловлено тем, что при чётном продолжении в соседний промежуток
функция будет непрерывной (см. рис.1.5), и скорость сходимости получающегося ряда будет выше, чем ряда по синусам. Если функция, заданная на , обращается в нуль на обоих концах интервала, то предпочти­тельнее её разложение в ряд по синусам, так как при этом будет непрерывной не только сама функция f (x ), но и её первая произ­водная.

1.6. Обобщённый ряд Фурье

Функции
и
(n , m = 1, 2, 3,…) называются ортогональными на отрезке [a , b ], если при n m

. (1.22)

При этом предполагается, что

и
.

Рассмотрим разложение функции f (x ), которая определена на отрезке [a , b ], в ряд по системе ортогональных функций

где коэффициенты (i = 0,1,2...) являются постоянными числами.

Для определения коэффициентов разложения умножим равенство (1.23) на
и проинтегрируем почленно на отрезке [a , b ]. Получим равенство

В силу ортогональности функций
все интегралы в правой части равенства будут равны нулю, кроме одного (при
). Отсюда следует, что

(1.24)

Ряд (1.23) по системе ортогональных функций, коэффициенты которого определяются по формуле (1.24), называется обобщённым рядом Фурье для функции f (x ).

Для упрощения формул для коэффициентов применяют, так называемое, нормирование функций . Система функций φ 0 (x ), φ 1 (x ),…, φ n (x ),… называется нор­ми­рованной на промежутке [a , b ], если

. (1.25)

Справедлива теорема: всякую ортогональную систему функ­­ций можно нормировать. Это означает, что можно подобрать постоянные числа μ 0 , μ 1 ,…, μ n ,… так, чтобы система функций μ 0 φ 0 (x ), μ 1 φ 1 (x ),…, μ n φ n (x ),… была не только ортогональной, но и нормированной. Действительно, из условия

получим, что

.

называется нормой функции
и обозначается через
.

Если система функций нормирована, то, очевидно,
. Последовательность функцийφ 0 (x ), φ 1 (x ),…, φ n (x ),…, опреде­лённых на отрезке [a , b ], является ортонормированной на этом отрезке, если все функции нормированы и взаимно ортогональны на [a , b ].

Для ортонормированной системы функций коэффициенты обобщённого ряда Фурье равны

. (1.26)

Пример. Разложить функцию y = 2 – 3x на отрезке
в обобщëнный ряд Фурье по системе ортогональных на этом отрезке функций, в качестве которых взять собственные функции задачи на собственные значения

предварительно проверив их на квадратичную интегрируемость и ортогональность.

Замечание. Говорят, что функция
, заданная на отрезке
, есть функция с интегрируемым квадратом, если она сама и еë квадрат интегрируемы на
, то есть, если существуют интегралы
и
.

Решение. Сначала решаем задачу на собственные значения. Общее решение уравнения этой задачи будет

а его производная запишется в виде

Поэтому из граничных условий следует:

Для существования нетривиального решения необходимо принять

,

откуда следует
Поэтому собственные значения параметра равны

,

а соответствующие им собственные функции с точностью до множителя будут

. (1.27)

Проверим полученные собственные функции на ортогональность на отрезке :

так как при целых
.При этом

Следовательно, найденные собственные функции ортогональны на отрезке .

Разложим заданную функцию в обобщëнный ряд Фурье по системе ортогональных собственных функций (1.27):

, (1.28)

коэффициенты которого вычисляются по (1.24):

. (1.29)

Подставляя (129) в (1.28), окончательно получим

Министерство общего и профессионального образования

Сочинский государственный университет туризма

и курортного дела

Педагогический институт

Математический факультет

Кафедра общей математики

ДИПЛОМНАЯ РАБОТА

Ряды Фурье и их приложения

В математической физике.

Выполнила: студентка 5-го курса

подпись дневной формы обучения

Специальность 010100

„Математика”

Касперовой Н.С.

Студенческий билет № 95471

Научный руководитель:доцент, канд.

подпись техн. наук

Позин П.А.

Сочи, 2000 г.


1. Введение.

2. Понятие ряда Фурье.

2.1. Определение коэффициентов ряда Фурье.

2.2. Интегралы от периодических функций.

3. Признаки сходимости рядов Фурье.

3.1. Примеры разложения функций в ряды Фурье.

4. Замечание о разложении периодической функции в ряд Фурье

5. Ряды Фурье для четных и нечетных функций.

6. Ряды Фурье для функций с периодом 2 l .

7. Разложение в ряд Фурье непериодической функции.

Введение.

Жан Батист Жозеф Фурье - французский математик, член Парижской Академии Наук (1817).

Первые труды Фурье относятся к алгебре. Уже в лекциях 1796 он изложил теорему о числе действительных корней алгебраического уравнения, лежащих между данными границами (опубл. 1820), названную его именем; полное решение о числе действительных корней алгебраического уравнения было получено в 1829 Ж.Ш.Ф. Штурмом. В 1818 Фурье исследовал вопрос об условиях применимости разработанного Ньютоном метода численного решения уравнений, не зная об аналогичных результатах, полученных в 1768 французским математиком Ж.Р. Мурайлем. Итогом работ Фурье по численным методам решения уравнений является «Анализ определённых уравнений», изданный посмертно в 1831.

Основной областью занятий Фурье была математическая физика. В 1807 и 1811 он представил Парижской Академии Наук свои первые открытия по теории распространении тепла в твёрдом теле, а в 1822 опубликовал известную работу «Аналитическая теория теплоты», сыгравшую большую роль в последующей истории математики. Это – математическая теория теплопроводности. В силу общности метода эта книга стала источником всех современных методов математической физики. В этой работе Фурье вывел дифференциальное уравнение теплопроводности и развил идеи, в самых общих чертах намеченные ранее Д. Бернулли, разработал для решения уравнения теплопроводности при тех или иных заданных граничных условиях метод разделения переменных (метод Фурье), который он применял к ряду частных случаев (куб, цилиндр и др.). В основе этого метода лежит представление функций тригонометрическими рядами Фурье.

Ряды Фурье теперь стали хорошо разработанным средством в теории уравнений в частных производных при решении граничных задач.

1. Понятие ряда Фурье. (стр. 94, Уваренков)

Ряды Фурье играют большую роль в математической физике, теории упругости, электротехнике и особенно их частный случай – тригонометрические ряды Фурье.

Тригонометрическим рядом называют ряд вида

или, символической записи:

(1)

где ω, a 0 , a 1 , …, a n , …, b 0 , b 1 , …,b n , …- постоянные числа (ω>0) .

К изучению таких рядов исторически привели некоторые задачи физики, например задача о колебаниях струны (XVIII в.), задача о закономерностях в явлениях теплопроводности и др. В приложениях рассмотрение тригонометрических рядов, прежде всего связано с задачей представления данного движения, описанного уравнением у = ƒ(χ), в

виде суммы простейших гармонических колебаний, часто взятых в бесконечно большом числе, т. е. в качестве суммы ряда вида (1).

Таким образом, мы приходим к следующей задаче: выяснить существует ли для данной функции ƒ(x) на заданном промежутке такой ряд (1),который сходился бы на этом промежутке к данной функции. Если это возможно, то говорят, что на этом промежутке функция ƒ(x) разлагается в тригонометрический ряд.

Ряд (1) сходится в некоторой точке х 0 , в силу периодичности функций

(n=1,2,..), он окажется сходящимся и во всех точках вида (m- любое целое число), и тем самым его сумма S(x) будет (в области сходимости ряда) периодической функцией: если S n (x) – n-я частичная сумма этого ряда, то имеем

а потому и

, т. е. S(x 0 +T)=S(x 0). Поэтому, говоря о разложении некоторой функции ƒ(x) в ряд вида (1), будем предполагать ƒ(x) периодической функцией.

2. Определение коэффициентов ряда по формулам Фурье.

Пусть периодическая функция ƒ(х) с периодом 2π такая, что она представляется тригонометрическим рядом, сходящимся к данной функции в интервале (-π, π), т. е. является суммой этого ряда:

. (2)

Предположим, что интеграл от функции, стоящей в левой части этого равенства, равняется сумме интегралов от членов этого ряда. Это будет выполняться, если предположить, что числовой ряд, составленный из коэффициентов данного тригонометрического ряда, абсолютно сходится, т. е.. сходится положительный числовой ряд

(3)

Ряд (1) мажорируем и его можно почленно интегрировать в промежутке (-π, π). Проинтегрируем обе части равенства (2):

.

Вычислим отдельно каждый интеграл, встречающийся в правой части:

, , .

Таким образом,

, откуда . (4)

Оценка коэффициентов Фурье. (Бугров)

Теорема 1. Пусть функция ƒ(x) периода 2π имеет непрерывную производную ƒ ( s) (x) порядка s, удовлетворяющей на всей действительной оси неравенству:

│ ƒ (s) (x)│≤ M s ; (5)

тогда коэффициенты Фурье функции ƒ удовлетворяют неравенству

(6)

Доказательство. Интегрируя по частям и учитывая, что

ƒ(-π) = ƒ(π), имеем


Интегрируя правую часть (7) последовательно, учитывая, что производные ƒ ΄ , …, ƒ (s-1) непрерывны и принимают одинаковые значения в точках t = -π и t = π, а также оценку (5), получим первую оценку (6).

Вторая оценка (6) получается подобным образом.

Теорема 2. Для коэффициентов Фурье ƒ(x) имеет место неравенство

(8)

Доказательство. Имеем

Лекция №60

6.21. Ряды Фурье для чётных и нечётных функций.

Теорема: Для любой чётной функции её ряд Фурье состоит только из косинусов.

Для любой нечётной функции:
.

Доказательство : Из определения четной и нечетной функции следует, что если ψ(x) – четная функция, то

.

Действительно,

так как по определению четной функции ψ(- x) = ψ(x).

Аналогично можно доказать, что если ψ(x) – нечетная функция, то

Если в ряд Фурье разлагается нечетная функция ƒ(x), то произведение ƒ(x) ·coskxесть функция также нечетная, а ƒ(x) ·sinkx– четная; следовательно,

(21)

т. е. ряд Фурье нечетной функции содержит «только синусы».

Если в ряд Фурье разлагается четная функция, то произведение ƒ(x)·sinkxесть функция нечетная, а ƒ(x) ·coskx– четная, то:

(22)

т. е. ряд Фурье четной функции содержит «только косинусы».

Полученные формулы позволяют упрощать вычисления при разыскании коэффициентов Фурье в тех случаях, когда заданная функция является четной или нечетной, а также получать разложение в ряд Фурье функции, заданной на части промежутка .

Во многих задачах функция
задается в интервале
. Требуется представить данную функцию в виде бесконечной суммы синусов и косинусов углов, кратных числам натурального ряда, т.е. необходимо произвести разложение функции в ряд Фурье. Обычно в таких случаях поступают следующим образом.

Чтобы разложить заданную функцию по косинусам, функцию
доопределяют в интервале
четным образом, т.е. так, что в интервале

. Тогда для «продолженной» четной функции справедливы все рассуждения предыдущего параграфа, и, следовательно, коэффициенты ряда Фурье определяются по формулам

,

В этих формулах, как видим, фигурируют значения функции
, лишь заданные в интервале
. Чтобы разложить функцию
, заданную в интервале
, по синусам, необходимо доопределить эту функцию в интервале
нечетным образом, т.е. так, что в интервале

.

Тогда вычисление коэффициентов ряда Фурье нужно вести по формулам

.

Теорема 1. Функцию заданную на промежутке можно бесконечным числом способов разложить в тригонометрический ряд Фурье, в частности по cos или по sin.

Замечание. Функция
, заданная в интервале
может быть доопределена в интервале
любым образом, а не только так, как было сделано выше. Но при произвольном доопределении функции разложение в ряд Фурье будет более сложным, чем то, которое получается при разложении по синусам или косинусам.

Пример. Разложить в ряд Фурье по косинусам функцию
, заданную в интервале
(рис.2а).

Решение. Доопределим функцию
в интервале
четным образом (график симметричен относительно оси
)

,

Так как
, то

при

,

при


6.22. Ряд Фурье для функции, заданной на произвольном промежутке

До сих пор мы рассматривали функцию, заданную в интервале
, считая ее вне этого интервала периодической, с периодом
.

Рассмотрим теперь функцию
, период которой равен 2l , т.е.
на интервале
, и покажем, что в этом случае функция
может быть разложена в ряд Фурье.

Положим
, или
. Тогда при измененииот –l доl новая переменнаяизменяется от
дои, следовательно, функциюможно рассматривать как функцию, заданную в интервале от
дои периодическую вне этого промежутка, с периодом
.

Итак,
.

Разложив
в ряд Фурье, получим

,

.

Переходя к старым переменным, т.е. полагая

, получим
,
и
.

То есть ряд Фурье для функции
, заданной в интервале
, будет иметь вид:

,

,


.

Если функция
четная, то формулы для определения коэффициентов ряда Фурье упрощаются:

,

,


.

В случае, если функция
нечетная:

,

,


.

Если функция
задана в интервале
, то ее можно продолжить в интервале
либо четным, либо нечетным образом. В случае четного продолжения функции в интервале

,

.

В случае нечетного доопределения функции в интервале
коэффициенты ряда Фурье находятся по формулам

,


.

Пример . Разложить в ряд Фурье функцию

по синусам кратных дуг.

Решение . График заданной функции представлен на рис.3. Продолжим функцию нечетным образом (рис.4), т.е. будем вести разложение по синусам.

Все коэффициенты

,

Введем замену
. Тогда при
получим
, при
имеем
.

Таким образом

.

6.23. .Понятие о разложении в ряд Фурье непериодических функций

Функцию, заданную в основной области (-ℓ, ℓ), можно периодически продолжить за основную область с помощью функционального соотношения ƒ(x+2 ℓ) = ƒ(x).

Для непериодической функции ƒ(x) (-∞

φ(x)=
(2.18)

Формула (2.18) будет верна на всей оси -∞ < x< ∞ . Можно написать подобное разложение для функции

ƒ(x)=
(2.19)

Формула (2.19) будет верна только на конечном промежутке (-ℓ, ℓ), так как на этом промежутке ƒ(x) и φ(x) совпадают.

Таким образом, непериодическую функцию можно разложить в ряд Фурье на конечном промежутке.