Шаг геометрической прогрессии. Сумма бесконечной геометрической прогрессии убывающей и парадокс зенона

Рассмотрим теперь вопрос о суммировании бесконечной геометрической прогрессии. Назовем частичной суммой данной бесконечной прогрессии сумму ее первых членов. Обозначим частичную сумму символом

Для каждой бесконечной прогрессии

можно составить (также бесконечную) последовательность ее частичных сумм

Пусть последовательность при неограниченном возрастании имеет предел

В этом случае число S, т. е. предел частичных сумм прогрессии, называют суммой бесконечной прогрессии. Мы докажем, что бесконечная убывающая геометрическая прогрессия всегда имеет сумму, и выведем формулу для этой суммы (можно также показать, что при бесконечная прогрессия не имеет суммы, не существует).

Запишем выражение частичной суммы как суммы членов прогрессии по формуле (91.1) и будем рассматривать предел частичной суммы при

Из теоремы п. 89 известно, что для убывающей прогрессии ; поэтому, применяя теорему о пределе разности, найдем

(здесь также использовано правило: постоянный множитель выносится за знак предела). Существование доказано, и одновременно получена формула суммы бесконечно убывающей геометрической прогрессии:

Равенство (92.1) можно также писать в виде

Здесь может казаться парадоксальным, что сумме бесконечного множества слагаемых приписывается вполне определенное конечное значение.

Можно привести наглядную иллюстрацию в пояснение такого положения. Рассмотрим квадрат со стороной, равной единице (рис. 72). Разделим этот квадрат горизонтальной линией на две равные части и верхнюю часть приложим к нижней так, чтобы образовался прямоугольник со сторонами 2 и . После этого правую половину этого прямоугольника снова разделим горизонтальной линией пополам и верхнюю часть приложим к нижней (как показано на рис. 72). Продолжая этот процесс, мы все время преобразуем исходный квадрат с площадью, равной 1, в равновеликие фигуры (принимающие вид лестницы с утоньшающимися ступеньками).

При бесконечном продолжении этого процесса вся площадь квадрата разлагается в бесконечное чьсло слагаемых - площадей прямоугольников с основаниями, равными 1, и высотами Площади прямоугольников как раз образуют при этом бесконечную убывающую прогрессию ее сумма

т. е., как и следовало ожидать, равна площади квадрата.

Пример. Найти суммы следующих бесконечных прогрессий:

Решение, а) Замечаем, что у этой прогрессии Поэтому по формуле (92.2) находим

б) Здесь значит, по той же формуле (92.2) имеем

в) Находим, что у этой прогрессии Поэтому данная прогрессия не имеет суммы.

В п. 5 было показано применение формулы суммы членов бесконечно убывающей прогрессии к обращению периодической десятичной дроби в обыкновенную дробь.

Упражнения

1. Сумма бесконечно убывающей геометрической прогрессии равна 3/5, а сумма ее первых четырех членов равна 13/27. Найти первый член и знаменатель прогрессии.

2. Найти четыре числа, образующие знакочередующуюся геометрическую прогрессию, у которой второй член меньше первого на 35, а третий больше четвертого на 560.

3. Показать, что если последовательность

образует бесконечно убывающую геометрическую прогрессию, то и последовательность

при любом образует бесконечно убывающую геометрическую прогрессию. Сохранится ли это утверждение при

Вывести формулу для произведения членов геометрической прогрессии.

Цель урока: ознакомление учащихся с новым видом последовательности – бесконечно убывающей геометрической прогрессией.
Задачи:
формулирование начального представления о пределе числовой последовательности;
знакомство с ещё одним способом обращения бесконечных периодических дробей в обыкновенные с помощью формулы суммы бесконечно убывающей геометрической прогрессии;
развитие интеллектуальных качеств личности школьников такие, как логическое мышление, способность к оценочным действиям, обобщению;
воспитание активности, взаимопомощи, коллективизма, интереса к предмету.

Скачать:


Предварительный просмотр:

Урок по теме “Бесконечно убывающая геометрическая прогрессия” (алгебра, 10кл.)

Цель урока: ознакомление учащихся с новым видом последовательности – бесконечно убывающей геометрической прогрессией.

Задачи:

формулирование начального представления о пределе числовой последовательности; знакомство с ещё одним способом обращения бесконечных периодических дробей в обыкновенные с помощью формулы суммы бесконечно убывающей геометрической прогрессии;

развитие интеллектуальных качеств личности школьников такие, как логическое мышление, способность к оценочным действиям, обобщению;

воспитание активности, взаимопомощи, коллективизма, интереса к предмету.

Оборудование: компьютерный класс, проектор, экран.

Тип урока: урок – усвоение новой темы.

Ход урока

I. Орг. момент. Сообщение темы и цели урока.

II. Актуализация знаний учащихся.

В 9 классе вы изучали арифметическую и геометрическую прогрессии.

Вопросы

1. Определение арифметической прогрессии.

(Арифметической прогрессией называется последовательность, каждый член которой,

Начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом).

2. Формула n -го члена арифметической прогрессии

3. Формула суммы первых n членов арифметической прогрессии.

( или )

4. Определение геометрической прогрессии.

(Геометрической прогрессией называется последовательность отличных от нуля чисел,

Каждый член которой, начиная со второго, равен предыдущему члену, умноженному на

Одно и то же число).

5. Формула n -го члена геометрической прогрессии

6. Формула суммы первых n членов геометрической прогрессии.

7. Какие формулы вы еще знаете?

(, где ; ;

; , )

Задания

1. Арифметическая прогрессия задана формулой a n = 7 – 4n . Найдите a 10 . (-33)

2. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите a 4 . (4)

3. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите a 17 . (-35)

4. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите S 17 . (-187)

5. Для геометрической прогрессии найдите пятый член.

6. Для геометрической прогрессии найдите n -й член.

7. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите b 4 . (4)

8. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите b 1 и q .

9. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите S 5 . (62)

III. Изучение новой темы (демонстрация презентации).

Рассмотрим квадрат со стороной, равной 1. Нарисуем ещё один квадрат, сторона которого равна половине первого квадрата, затем ещё один, сторона которого – половина второго, потом следующий и т.д. Каждый раз сторона нового квадрата равна половине предыдущего.

В результате, мы получили последовательность сторон квадратов образующих геометрическую прогрессию со знаменателем .

И, что очень важно, чем больше мы будем строить таких квадратов, тем меньше будет сторона квадрата. Например ,

Т.е. с возрастанием номера n члены прогрессии приближаются к нулю.

С помощью этого рисунка можно рассмотреть и ещё одну последовательность.

Например, последовательность площадей квадратов:

И, опять, если n неограниченно возрастает, то площадь, как угодно близко приближается к нулю.

Рассмотрим ещё один пример. Равносторонний треугольник со стороной равной 1см. Построим следующий треугольник с вершинами в серединах сторон 1-го треугольника, по теореме о средней линии треугольника – сторона 2-го равна половине стороны первого, сторона 3-го – половине стороны 2-го и т.д. Опять получаем последовательность длин сторон треугольников.

При .

Если рассмотреть геометрическую прогрессию с отрицательным знаменателем.

То, опять, с возрастанием номера n члены прогрессии приближаются к нулю.

Обратим внимание на знаменатели этих последовательностей. Везде знаменатели были меньше 1 по модулю.

Можно сделать вывод: геометрическая прогрессия будет бесконечно убывающей, если модуль её знаменателя меньше 1.

Фронтальная работа.

Определение:

Геометрическая прогрессия называется бесконечно убывающей, если модуль её знаменателя меньше единицы. .

С помощью определения можно решить вопрос о том, является ли геометрическая прогрессия бесконечно убывающей или нет.

Задача

Является ли последовательность бесконечно убывающей геометрической прогрессией, если она заданна формулой:

Решение:

Найдем q .

; ; ; .

данная геометрическая прогрессия является бесконечно убывающей.

б) данная последовательность не является бесконечно убывающей геометрической прогрессией.

Рассмотрим квадрат со стороной, равной 1. Разделим его пополам, одну из половинок ещё пополам и т.д. площади всех полученных прямоугольников при этом образуют бесконечно убывающую геометрическую прогрессию:

Сумма площадей всех полученных таким образом прямоугольников будет равна площади 1-го квадрата и равна 1.

Но в левой части этого равенства – сумма бесконечного числа слагаемых.

Рассмотрим сумму n первых слагаемых.

По формуле суммы n первых членов геометрической прогрессии, она равна .

Если n неограниченно возрастает, то

или . Поэтому , т.е. .

Сумма бесконечно убывающей геометрической прогрессии есть предел последовательности S 1 , S 2 , S 3 , …, S n , … .

Например, для прогрессии ,

имеем

Так как

Сумму бесконечно убывающей геометрической прогрессии можно находить по формуле .

III. Осмысление и закрепление (выполнение заданий).

№13; №14; №15(1,3); №16(1,3); №18(1,3); №19; №20.

IV. Подведение итогов.

С какой последовательностью сегодня познакомились?

Дайте определение бесконечно убывающей геометрической прогрессии.

Как доказать, что геометрическая прогрессия является бесконечно убывающей?

Назовите формулу суммы бесконечно убывающей геометрической прогрессии.

V. Домашнее задание.

2. № 15(2,4); №16(2,4); 18(2,4).

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Мыслить последовательно, судить доказательно, опровергать неправильные выводы должен уметь всякий: физик и поэт, тракторист и химик. Э.Кольман В математике следует помнить не формулы, а процессы мышления. В.П.Ермаков Легче найти квадратуру круга, чем перехитрить математика. Огастес де Морган Какая наука может быть более благородна, более восхитительна, более полезна для человечества, чем математика? Франклин

Бесконечно убывающая геометрическая прогрессия 10 класс

I . Арифметическая и геометрическая прогрессии. Вопросы 1. Определение арифметической прогрессии. Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом. 2. Формула n -го члена арифметической прогрессии. 3. Формула суммы первых n членов арифметической прогрессии. 4. Определение геометрической прогрессии. Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число 5. Формула n -го члена геометрической прогрессии. 6. Формула суммы первых n членов геометрической прогрессии.

II . Арифметическая прогрессия. Задания Арифметическая прогрессия задана формулой a n = 7 – 4 n Найдите a 10 . (-33) 2. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите a 4 . (4) 3. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите a 17 . (-35) 4. В арифметической прогрессии a 3 = 7 и a 5 = 1 . Найдите S 17 . (-187)

II . Геометрическая прогрессия. Задания 5. Для геометрической прогрессии найдите пятый член 6. Для геометрической прогрессии найдите n -й член. 7. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите b 4 . (4) 8. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите b 1 и q . 9. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите S 5 . (62)

определение: Геометрическая прогрессия называется бесконечно убывающей, если модуль её знаменателя меньше единицы.

Задача №1 Является ли последовательность бесконечно убывающей геометрической прогрессией, если она заданна формулой: Решение: а) данная геометрическая прогрессия является бесконечно убывающей. б) данная последовательность не является бесконечно убывающей геометрической прогрессией.

Сумма бесконечно убывающей геометрической прогрессии есть предел последовательности S 1 , S 2 , S 3 , …, S n , … . Например, для прогрессии имеем Так как Сумму бесконечно убывающей геометрической прогрессии можно находить по формуле

Выполнение заданий Найти сумму бесконечно убывающей геометрической прогрессии с первым членом 3, вторым 0,3. 2. №13; №14; учебник, стр. 138 3. №15(1;3); №16(1;3) №18(1;3); 4. №19; №20.

С какой последовательностью сегодня познакомились? Дайте определение бесконечно убывающей геометрической прогрессии. Как доказать, что геометрическая прогрессия является бесконечно убывающей? Назовите формулу суммы бесконечно убывающей геометрической прогрессии. Вопросы

Известный польский математик Гуго Штейнгаус шутливо утверждает, что существует закон, который формулируется так: математик сделает это лучше. А именно, если поручить двум людям, один из которых математик, выполнение любой незнакомой им работы, то результат всегда будет следующим: математик сделает ее лучше. Гуго Штейнгаус 14.01.1887-25.02.1972


Некоторые задачи физики и математики могут быть решены с использованием свойств числовых рядов. Две самых простых числовых последовательности, которые изучаются в школах, это алгебраическая и геометрическая. В данной статье рассмотрим подробнее вопрос, как найти сумму бесконечной прогрессии геометрической убывающей.

Прогрессия геометрическая

Под этими словами понимают такой ряд действительных чисел, элементы a i которого удовлетворяют выражению:

Здесь i - номер элемента в ряду, r - постоянное число, которое называется знаменателем.

Это определение показывает, что, зная любой член прогрессии и его знаменатель, можно восстановить весь ряд чисел. Например, если известен 10-й элемент, то разделив его на r, получим 9-й элемент, затем, разделив еще раз, получим 8-й и так далее. Эти простые рассуждения позволяют записать выражение, которое справедливо для рассматриваемого ряда чисел:

Примером прогрессии со знаменателем 2 может быть такой ряд:

1, 2, 4, 8, 16, 32, ...

Если же знаменатель будет равен -2, тогда получается совершенно другой ряд:

1, -2, 4, -8, 16, -32, ...

Прогрессия геометрическая является гораздо более быстрой, чем алгебраическая, то есть ее члены быстро растут и быстро уменьшаются.

Сумма i членов прогрессии

Для решения практических задач часто приходиться вычислять сумму нескольких элементов рассматриваемой числовой последовательности. Для этого случая справедлива следующая формула:

S i = a 1 *(r i -1)/(r-1)

Видно, что для вычисления суммы i членов необходимо знать всего два числа: a 1 и r, что является логичным, поскольку они однозначно определяют всю последовательность.

Убывающая последовательность и сумма ее членов

Теперь рассмотрим частный случай. Будем считать, что модуль знаменателя r не превышает единицы, то есть -1

Убывающую геометрическую прогрессию интересно рассмотреть, потому что бесконечная сумма ее членов стремится к конечному действительному числу.

Получим формулу суммы Это легко сделать, если выписать выражение для S i , приведенного в предыдущем пункте. Имеем:

S i = a 1 *(r i -1)/(r-1)

Рассмотрим случай, когда i->∞. Поскольку модуль знаменателя меньше 1, то возведение его в бесконечную степень даст ноль. Это можно проверить на примере r=0,5:

0,5 2 = 0,25; 0,5 3 = 0,125; ...., 0,5 20 = 0,0000009.

В итоге сумма членов бесконечной геометрической прогрессии убывающей примет форму:

Эта формула часто используется на практике, например, для вычисления площадей фигур. Ее также применяют при решении парадокса Зенона Элейского с черепахой и Ахиллесом.

Очевидно, что рассмотрение суммы бесконечной прогрессии геометрической возрастающей (r>1), приведет к результату S ∞ = +∞.

Задача на нахождение первого члена прогрессии

Покажем, как следует применять приведенные выше формулы на примере решения задачи. Известно, что сумма бесконечной геометрической прогрессии равна 11. При этом 7-й ее член в 6 раз меньше третьего члена. Чему равен первый элемент для этого числового ряда?

Для начала выпишем два выражения для определения 7-го и 3-го элементов. Получаем:

Разделив первое выражение на второе, и выражая знаменатель, имеем:

a 7 /a 3 = r 4 => r = 4 √(a 7 /a 3)

Поскольку отношение седьмого и третьего членов дано в условии задачи, можно его подставить и найти r:

r = 4 √(a 7 /a 3) = 4 √(1/6) ≈ 0,63894

Мы рассчитали r с точностью пяти значащих цифр после запятой. Поскольку полученное значение меньше единицы, значит, прогрессия является убывающей, что оправдывает использование формулы для ее бесконечной суммы. Запишем выражение для первого члена через сумму S ∞ :

Подставляем в эту формулу известные значения и получаем ответ:

a 1 = 11*(1-0,63894) = 3,97166.

Знаменитый парадокс Зенона с быстрым Ахиллесом и медленной черепахой

Зенон Элейский - известный греческий философ, живший в V веке до н. э. До настоящего времени дошли ряд его апогей или парадоксов, в которых формулируется проблема бесконечно большого и бесконечно малого в математике.

Одним из известных парадоксов Зенона являются соревнования Ахиллеса и черепахи. Зенон полагал, что если Ахиллес предоставит некоторое преимущество черепахе в расстоянии, то он никогда не сможет ее догнать. Например, пусть Ахиллес бежит в 10 раз быстрее, чем ползет животное, которое для примера находится на расстоянии 100 метров впереди него. Когда воин пробежит 100 метров, то черепаха отползет на 10. Пробежав вновь 10 метров, Ахиллес увидит, что черепаха отползла еще на 1 метр. Рассуждать так можно до бесконечности, расстояние будет между соревнующимися действительно уменьшаться, но черепаха будет всегда находиться впереди.

Привел Зенона к выводу, что движения не существует, и все окружающие перемещения объектов - это иллюзия. Конечно же, древнегреческий философ ошибался.

Решение парадокса кроется в том, что бесконечная сумма постоянно уменьшающихся отрезков, стремится к конечному числу. В приведенном выше случае для расстояния, которое пробежал Ахиллес, получим:

100 + 10 + 1 + 0,1 + 0,01 + ...

Применяя формулу суммы бесконечной прогрессии геометрической, получим:

S ∞ = 100 /(1-0,1) ≈ 111,111 метров

Этот результат показывает, что Ахиллес догонит черепаху, когда она проползет всего 11,111 метров.

Древние греки не умели работать с бесконечными величинами в математике. Однако этот парадокс можно разрешить, если обратить внимание не на бесконечное число промежутков, которые должен преодолеть Ахиллес, а на конечное число шагов бегуна, необходимых для достижения цели.

Инструкция

10, 30, 90, 270...

Требуется найти знаменатель геометрической прогрессии.
Решение:

1 вариант. Возьмем произвольный член прогрессии (например, 90) и разделим его на предыдущий (30): 90/30=3.

Если известна сумма нескольких членов геометрической прогрессии или сумма всех членов убывающей геометрической прогрессии, то для нахождения знаменателя прогрессии воспользуйтесь соответствующими формулами:
Sn = b1*(1-q^n)/(1-q), где Sn – сумма n первых членов геометрической прогрессии и
S = b1/(1-q), где S – сумма бесконечно убывающей геометрической прогрессии (сумма всех членов прогрессии со знаменателем меньшим единицы).
Пример.

Первый член убывающей геометрической прогрессии равен единице, а сумма всех ее членов равна двум.

Требуется определить знаменатель этой прогрессии.
Решение:

Подставьте данные из задачи в формулу. Получится:
2=1/(1-q), откуда – q=1/2.

Прогрессия представляет собой последовательность чисел. В геометрической прогрессии каждый последующий член получается умножением предыдущего на некоторое число q, называемое знаменателем прогрессии.

Инструкция

Если известно два соседних члена геометрической b(n+1) и b(n), чтобы получить знаменатель, надо число с большим разделить на предшествующее ему: q=b(n+1)/b(n). Это следует из определения прогрессии и ее знаменателя. Важным условием является неравенство нулю первого члена и знаменателя прогрессии, иначе считается неопределенной.

Так, между членами прогрессии устанавливаются следующие соотношения: b2=b1 q, b3=b2 q, … , b(n)=b(n-1) q. По формуле b(n)=b1 q^(n-1) может быть вычислен любой член геометрической прогрессии, в которой известен знаменатель q и член b1. Также каждый из прогрессии по модулю равен среднему своих соседних членов: |b(n)|=√, отсюда прогрессия и получила свое .

Аналогом геометрической прогрессии является простейшая показательная функция y=a^x, где x стоит в показателе степени, a – некоторое число. В этом случае знаменатель прогрессии совпадает с первым членом и равен числу a. Под значением функции y можно понимать n-й член прогрессии, если аргумент x принять за натуральное число n (счетчик).

Существует для суммы первых n членов геометрической прогрессии: S(n)=b1 (1-q^n)/(1-q). Данная формула справедлива при q≠1. Если q=1, то сумма первых n членов вычисляется формулой S(n)=n b1. Кстати, прогрессия будет называться возрастающей при q большем единицы и положительном b1. При знаменателе прогрессии, по модулю не превышающем единицы, прогрессия будет называться убывающей.

Частный случай геометрической прогрессии – бесконечно убывающая геометрическая прогрессия (б.у.г.п.). Дело в том, что члены убывающей геометрической прогрессии будут раз за разом уменьшаться, но никогда не достигнут нуля. Несмотря на это, можно найти сумму всех членов такой прогрессии. Она определяется формулой S=b1/(1-q). Общее количество членов n бесконечно.

Чтобы наглядно представить, как можно сложить бесконечное количество чисел и не получить при этом бесконечность, испеките торт. Отрежьте половину этого . Затем отрежьте 1/2 от половины, и так далее. Кусочки, которые у вас будут получаться, являют собой не что иное, как члены бесконечно убывающей геометрической прогрессии со знаменателем 1/2. Если сложить все эти кусочки, вы получите исходный торт.

Задачи по геометрии - это особая разновидность упражнений, требующая пространственного мышления. Если у вас не получается решить геометрическую задачу , попробуйте следовать нижеприведенным правилам.

Инструкция

Прочитайте очень внимательно условие задачи, если что-то не запомнили или не поняли, перечитайте еще раз.

Постарайтесь определить, к какому виду геометрических задач она , так, например: вычислительные, когда нужно узнать какую-нибудь величину, задачи на , требующие логической цепочки рассуждений, задачи на построение при помощи циркуля и линейки. Еще задачи смешанного типа. Когда вы выяснили тип задачи, постарайтесь рассуждать логически.

Примените необходимую теорему для данной задачи, если же есть сомнения или вообще отсутствуют варианты, то постарайтесь вспомнить теорию, которую вы проходили по соответствующей теме.

Оформите решение задачи также на черновике. Попытайтесь применить известные способы проверки верности вашего решения.

Оформите решение задачи аккуратно в тетради, без помарок и зачеркиваний, а главное - .Возможно, на решение первых геометрических задач уйдет сил и времени. Однако, как только вы освоите этот процесс - начнете щелкать задачи по , как орешки, получая от этого удовольствие!

Геометрическая прогрессия - это такая последовательность чисел b1, b2, b3, ... , b(n-1), b(n), что b2=b1*q, b3=b2*q, ... , b(n)=b(n-1)*q, b1≠0, q≠0. Иными словами, каждый член прогрессии получается из предыдущего умножением его на некоторый ненулевой знаменатель прогрессии q.

Инструкция

Задачи на прогрессии чаще всего решаются составлением и последующим системы относительно первого члена прогрессии b1 и знаменателя прогрессии q. Для составления уравнений полезно помнить некоторые формулы.

Как выразить n-й член прогрессии через первый член прогрессии и знаменатель прогрессии:b(n)=b1*q^(n-1).

Рассмотрим отдельно случай |q|<1. Если знаменатель прогрессии по модулю меньше единицы, имеем бесконечно убывающую геометрическую . Сумма первых n членов бесконечно убывающей геометрической прогрессии ищется так же, как и для неубывающей геометрической прогрессии. Однако в случае бесконечно убывающей геометрической прогрессии можно найти также сумму всех членов этой прогрессии, поскольку при бесконечном n будет бесконечно уменьшаться значение b(n), и сумма всех членов будет стремиться к определенному пределу. Итак, сумма всех членов бесконечно убывающей геометрической прогрессии

Геометрическая прогрессия не менее важная в математике по сравнению с арифметической. Геометрической прогрессией называют такую последовательность чисел b1, b2,..., b[n] каждый следующий член которой, получается умножением предыдущего на постоянное число. Это число, которое также характеризует скорость роста или убывания прогрессии называют знаменателем геометрической прогрессии и обозначают

Для полного задания геометрической прогрессии кроме знаменателя необходимо знать или определить первый ее член. Для положительного значения знаменателя прогрессия является монотонной последовательностью, причем если это последовательность чисел является монотонно убывающей и при монотонно возрастающей. Случай, когда знаменатель равен единице на практике не рассматривается, поскольку имеем последовательность одинаковых чисел, а их суммирование не вызывает практического интереса

Общий член геометрической прогрессии вычисляют по формуле

Сумма n первых членов геометрической прогрессии определяют по формуле

Рассмотрим решения классических задач на геометрическую прогрессию. Начнем для понимания с простейших.

Пример 1. Первый член геометрической прогрессии равен 27, а ее знаменатель равен 1/3. Найти шесть первых членов геометрической прогрессии.

Решение: Запишем условие задачи в виде

Для вычислений используем формулу n-го члена геометрической прогрессии

На ее основе находим неизвестные члены прогрессии

Как можно убедиться, вычисления членов геометрической прогрессии несложные. Сама прогрессия будет выглядеть следующим образом

Пример 2. Даны три первых члена геометрической прогрессии : 6; -12; 24. Найти знаменатель и седьмой ее член.

Решение: Вычисляем знаменатель геомитрической прогрессии исходя из его определения

Получили знакопеременную геометрическую прогрессию знаменатель которой равен -2. Седьмой член вычисляем по формуле

На этом задача решена.

Пример 3. Геометрическая прогрессия задана двумя ее членами . Найти десятый член прогрессии.

Решение:

Запишем заданные значения через формулы

По правилам нужно было бы найти знаменатель, а затем искать нужное значение, но для десятого члена имеем

Такую же формулу можно получить на основе нехитрых манипуляций с входными данными. Разделим шестой член ряда на другой, в результате получим

Если полученное значение умножить на шестой член, получим десятый

Таким образом, для подобных задач с помощью несложных преобразований в быстрый способ можно отыскать правильное решение.

Пример 4. Геометрическая прогрессия задано рекуррентными формулами

Найти знаменатель геометрической прогрессии и сумму первых шести членов.

Решение:

Запишем заданные данные в виде системы уравнений

Выразим знаменатель разделив второе уравнение на первое

Найдем первый член прогрессии из первого уравнения

Вычислим следующие пять членов для нахождения суммы геометрической прогрессии