Примеры резонанса в природе и технике. Явление резонанса и его возникновение. Примеры резонанса в механике, акустике, электрических цепях и атомах молекул

Под явлением резонанса стоит понимать мгновенный рост величины амплитуды колебаний объекта под воздействием внешнего источника энергии периодического характера воздействия с аналогичным значением частоты.

В статье мы рассмотрим природу возникновения резонанса на примере механического (математического) маятника, электрического колебательного контура и ядерного магнитного резонатора. Для того, чтобы проще представить физические процессы, статья сопровождается многочисленными вставками в виде практических примеров. Цель статьи - объяснить на примитивном уровне явление резонанса в разных областях его возникновения без математических формул.

Самая простая модель, которая может наглядно показать колебания, это простейший маятник, а точнее математический маятник. Колебания разделяют на свободные и вынужденные. Первоначально воздействующая энергия на маятник обеспечивает в теле свободные колебания без присутствия внешнего источника переменной энергии воздействия. Данная энергия может быть как кинетической, так и потенциальной.

Здесь не имеет значение насколько сильно или нет качается сам маятник, - время, потраченное на прохождения его пути в прямом и обратном направлении, сохраняется неизменным. Во избежание недоразумений с затуханием колебаний вследствие трения о воздух стоит выделить, что для свободных колебаний должны соблюдаться условия возврата маятника в точку равновесия и отсутствия трения.

А вот частота в свою очередь напрямую зависит от величины длины нити маятника. Чем короче нить, тем выше частота и наоборот.

Возникающая естественная частота тела под воздействием первоначально приложенной силы называется резонансной частотой.

Все тела, которым свойственны колебания, совершают их с заданной частотой. Для поддержания в теле незатухающих колебаний необходимо обеспечить постоянную периодическую энергетическую «подпитку». Это достигается воздействием в одновременный такт колебаний тела постоянной силы с определенным периодом. Таким образом возникающие колебания в теле под действием периодической силы снаружи называют вынужденными.

В какой-то момент внешних воздействий возникает резкий скачок амплитуды. Такой эффект возникает если периоды внутренних колебаний тела совпадают с периодами внешней силы и называется резонансом. Для возникновения резонанса достаточно совсем небольших величин внешних источников воздействия, но с обязательным условием повторения в такт. Естественно, при фактических расчетах в земных условиях не стоит забывать о действии сил трения и сопротивления воздуха на поверхность тело.

Простые примеры резонанса из жизни

Начнем с примера возникновения резонанса с которым сталкивался каждый из нас - это обычные качели на детской площадке.

Резонанс качелей

В ситуации с детскими качелями в момент приложения рукой силы при прохождения одной из двух симметричных высших точек возникает скачек амплитуды с соответствующим ростом энергии колебания. В быту явление резонанса могли наблюдать в ванной комнате любители вокала.

Звуковой акустический резонанс при пении в ванной

Каждый из поющих в ванной комнате из кафеля наверняка замечал как изменяется звук. Звуковые волны отражаясь о кафель в замкнутом пространстве ванной становятся громче и продолжительнее. Но этому воздействию подвержены не все ноты песни вокалиста, а лишь те, которые резонируют в один такт со звуковой резонансной частотой воздуха.

Для каждого из вышеперечисленного случая возникновения резонанса существует внешняя возбуждающая энергия: в случае с качелями элементарный толчок рукой, совпадающий с фазой колебания качели, и в случае с акустическим эффектом в ванной - голос человека, отдельные частоты которого совпадали с определенными частотами воздуха.

Звуковой резонанс бокала - опыт в домашних условиях

Данный опыт можно провести в домашних условиях. Для него необходим хрустальный бокал и закрытое помещение без посторонних шумов для чуткого восприятия аккустического эффекта. Смоченный водой палец передвигаем по краю бокала с «рваными» периодическими ускорениями. В процессе подобных движений вы можете наблюдать возникновение звенящего звука. Данный эффект возникает вследствие передачи энергии движения, частота колебание которой совпадает с собственными частотой колебания бокала.

Разрушение мостов вследствие резонанса - случай с Такомским мостом

Все служившие в армии помнят, как при прохождении строем по мосту от командира звучала команда: «Отставить в ногу!». Почему же нельзя было проходить строем по мосту «в ногу»? Оказывается, при прохождении строем по мосту с одновременным поднятием выпрямленной ноги до уровня колена военнослужащие опускают плоскость подошвы в один такт с усилием, которое сопровождается характерным шлепком.

Шаг военнослужащих сливается в один единый такт, создавая скачкообразную внешнюю прикладываемую энергию для моста с определенной величиной колебаний. В случае если собственная частота колебаний моста совпадет с колебанием шага солдат «в ногу» - произойдет резонанс, энергия которого может привести к разрушительным воздействиям конструкции моста.

Хотя случаи полного разрушения моста и не зафиксированы при прохождении солдат «в ногу», но известнее случай разрушения Такомского моста через пролив Такома-Нэрроуз в штате Вашингтон США в 1940 году.

Одна из причин вероятных причин разрушения - механический резонанс, который возник вследствие совпадения частоты ветрового потока с внутренней собственной частотой моста.

Резонанс тока в электрических цепях

Если в механике явление резонанса можно объяснить сравнительно просто, то в электричестве все на пальцах не объяснить. Для понимания необходимы элементарные знания физики электричества. Резонанс, создаваемый в электрической цепи, может возникать при условии наличия колебательного контура. Какие элементы необходимы для создания колебательного контура в электрической сети? Прежде всего цепь должна быть подключена к источнику электрической энергии.

В электросети простейший колебательный контур состоит из конденсатора и катушки индуктивности.

Конденсатор, состоящий внутри из двух металлических пластин разделенных диэлектрическими изоляторами, способен хранить электрическую энергию. Аналогичным свойством обладает и катушка индуктивности, выполненная в виде спиралеобразных витков проводника электричества.

Взаимное соединение конденсатора и катушки индуктивности в электрической сети, образующей колебательный контур , может быть как параллельным так и последовательным. В следующем видеопособии для демонстрации резонанса приводят пример последовательного способа включения.

Колебания электрического тока внутри контура возникает под действием электроэнергии. Однако, не все поступающие сигналы, а точнее его частоты, служат источником возникновения резонанса, а лишь только те, частота которых совпадает с резонансной частотой контура. Остальные, не участвующие в процессе, подавляются в общем потоке сигнала. Регулировать резонансную частоту возможно при помощи изменения значений емкости конденсатора и индуктивности катушки.

Возвращаясь к физике резонанса в механических колебаниях, он особенно выражен при минимальных значениях сил трения. Показатель трения сопоставляется в электрической цепи сопротивлению, увеличение которого ведет к нагреву проводника встледствие превращения электрической энергии во втрутреннюю энергию проводника. Поэтому, как и в случае с механикой, в колебательном электрическом контуре резонанс четко выражен при низком активном сопротивлении.

Пример электрического резонанса в процессе настройки ТВ и радиоприемников

В отличие от резонанса в механике, который может негативно влиять на материалы конструкций вплоть до разрушения, в электрических целях его вовсю используют в полезном функциональном назначении. Один из примеров применения - настройка ТВ и радиопрограмм в приемниках.

Радиоволны соответствующей частоты достигают приемных антенн и вызывают небольшие электрические колебания. Далее сигнал, включающий весь пул транслируемых передач, поступает в усилитель. Настроенный на определенную частоту в соответствии со значением регулируемой емкости конденсатора, колебательный контур принимает только тот сигнал, частота которого совпадает с его собственной.

В радиоприемнике установлен колебательный контур. Для настройки на станцию вращают рукоятку конденсатора переменной емкости, меняя положение его пластин и соответственно меняя резонансную частоту контура.

Вспомните аналоговый радиоприемник «Океан» времен СССР, ручка настройки каналов в котором есть ни что иное как регулятор изменения емкости конденсатора, положение которого меняет резонансную частоту контура.

Ядерный магнитный резонанс

Отдельные виды атомов содержат ядра, которые можно сравнить с миниатюрными магнитами. Под влиянием мощного внешнего магнитного поля ядра атомов меняют свою ориентацию в соответствии со взаимным расположением своего собственного магнитного поля по отношению к внешнему. Внешний сильный электромагнитный импульс поглощается атомом вследствие чего происходит его переориентация. Как только источник импульса прекращает свое действие ядра возвращаются на свои исходные позиции.

Ядра в зависимости от принадлежности к тому или иному атому способны принимать энергию в определенном диапазоне частот. Смена позиции ядра происходит в один такт с внешним колебаниям электромагнитного поля, что и служит причиной возникновения так называемого ядерного магнитного резонанса (сокращенно ЯМР). В научном мире этот вид резонанса используется в целях изучения атомных связей в рамках сложных молекул. Используемый в медицине метод отображения магнитного резонанса (ОМР) позволяет выводить результаты сканирования внутренних человеческих органов на дисплей для постановки диагноза и назначения лечения.

Магнитное поле ОМР сканера, формируемое при помощи катушек индуктивности, создает излучение высокой частоты под воздействием которого водорода изменяют свою ориентацию при условии совпадении своих собственных частот с внешним. В результате полученных данных с датчиков формируется графическая картинка на мониторе.

Если сравнивать метод ЯМР и ОМР относительно излучения, то сканирование с помощью ядерного магнитного резонатора менее вредно, чем ОМР. Также при исследовании мягких тканей технология ЯМР показала большую эффективность в отражении детализации исследуемого участка ткани.

Что такое спектрография

Взаимная связь между атомами в молекуле не строго жесткая, при изменении которой молекула переходит в состояние колебания. Частота колебаний взаимных связей атомов меняет соответственно резонансную частоту молекул. С помощью излучения электромагнитных волн в ИК спектре можно вызвать вышеуказанные колебания атомных связей. Данный метод под названием инфракрасная спектрография используется в научных лабораториях для изучения состава исследуемого материала.

Внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс - явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность . Явление резонанса впервые было описано Галилео Галилеем в 1602 г в работах, посвященных исследованию маятников и музыкальных струн .

Механика

Наиболее известная большинству людей механическая резонансная система - это обычные качели . Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния, можно найти по формуле:

,

Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности - процесс, который повторяется многократно, по аналогии с механическим маятником.

Приняв, что в момент резонанса индуктивная и ёмкостная составляющие импеданса равны, резонансную частоту можно найти из выражения

,

где ; f - резонансная частота в герцах; L - индуктивность в генри ; C - ёмкость в фарадах . Важно, что в реальных системах понятие резонансной частоты неразрывно связано с полосой пропускания , то есть диапазоном частот, в котором реакция системы мало отличается от реакции на резонансной частоте. Ширина полосы пропускания определяется добротностью системы .

СВЧ

В СВЧ электронике широко используются объёмные резонаторы , чаще всего цилиндрической или тороидальной геометрии с размерами порядка длины волны , в которых возможны добротные колебания электромагнитного поля на отдельных частотах, определяемых граничными условиями. Наивысшей добротностью обладают сверхпроводящие резонаторы, стенки которых изготовлены из сверхпроводника и диэлектрические резонаторы с модами шепчущей галереи .

Оптика

Акустика

Резонанс - один из важнейших физических процессов, используемых при проектировании звуковых устройств, большинство из которых содержат резонаторы , например, струны и корпус скрипки , трубка у флейты , корпус у барабанов .

Астрофизика

Орбитальный резонанс в небесной механике - это ситуация, при которой два (или более) небесных тела имеют периоды обращения, которые относятся как небольшие натуральные числа. В результате эти небесные тела оказывают регулярное гравитационное влияние друг на друга, которое может стабилизировать их орбиты.

Резонансный метод разрушения льда

Известно, что при движении нагрузки по ледяному покрову развивается система изгибных гравитационных волн (ИГВ). Это сочетание изгибных колебаний пластины льда и связанных с ними гравитационных волн в воде. Когда скорость нагрузки близка к минимальной фазовой скорости от ИГВ, вода прекращает поддержку ледяного покрова и поддержка осуществляется только упругими свойствами льда. Амплитуда ИГВ резко возрастает, и с достаточной нагрузкой, начинается разрушения. Потребляемая мощность в несколько раз ниже (в зависимости от толщины льда) по сравнению с ледоколами и ледокольными навесными оборудованиями. Этот метод разрушения льда известен как резонансный метод разрушения льда Ученый Козин, Виктор Михайлович получил экспериментальные теоретические кривые, которые показывают возможности своего метода .

Примечания

См. также

Литература

  • Richardson LF (1922), Weather prediction by numerical process, Cambridge.
  • Bretherton FP (1964), Resonant interactions between waves. J. Fluid Mech. , 20, 457-472.
  • Бломберген Н. Нелинейная оптика, М.: Мир, 1965. - 424 с.
  • Захаров В. Е. (1974), Гамильтонов формализм для волн в нелинейных средах с дисперсией, Изв. вузов СССР. Радиофизика , 17(4), 431-453.
  • Арнольд В. И. Потеря устойчивости автоколебаний вблизи резонансов, Нелинейные волны / Ред. А. В. Гапонов-Грехов. - М.: Наука, 1979. С. 116-131.
  • Kaup PJ, Reiman A and Bers A (1979), Space-time evolution of nonlinear three-wave interactions. Interactions in a homogeneous medium, Rev. of Modern Phys , 51 (2), 275-309.
  • Haken H (1983), Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and devices, Berlin, Springer-Verlag.
  • Филлипс O.М. Взаимодействие волн. Эволюция идей, Современная гидродинамика. Успехи и проблемы. - М.: Мир, 1984. - С. 297-314.
  • Журавлёв В. Ф., Климов Д. М. Прикладные методы в теории колебаний. - М.: Наука, 1988.
  • Сухоруков А.П Нелинейные волновые взаимодействия в оптике и радиофизике. - М.: Наука, 1988. - 232 с.
  • Брюно А. Д. Ограниченная задача трёх тел. - М.: Наука, 1990.

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Резонанс" в других словарях:

    - (франц. resonance, от лат. resono звучу в ответ, откликаюсь), относительно большой селективный (избирательный) отклик колебательной системы (осциллятора) на периодич. воздействие с частотой, близкой к частоте её собств. колебаний. При Р.… … Физическая энциклопедия

    - (фр., от лат. resonare раздаваться). В акустике: условия полного распространения звука. Доска, служащая для усиления звучности струн в музыкальных инструментах. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910.… … Словарь иностранных слов русского языка

    Резонанс - Резонанс: а резонансные кривые линейных осцилляторов при различной добротности Q(Q3>Q2>Q1), x интенсивность колебаний; б зависимость фазы от частоты при резонансе. РЕЗОНАНС (французское resonance, от латинского resono откликаюсь), резкое… … Иллюстрированный энциклопедический словарь

    РЕЗОНАНС, резонанса, мн. нет, муж. (от лат. resonans дающий отзвук). 1. Ответное звучание одного из двух тел, настроенных в унисон (физ.). 2. Способность увеличивать силу и длительность звука, свойственная помещениям, внутренняя поверхность… … Толковый словарь Ушакова

    Отзвук, резонон, мезомерия, отклик, адрон, частица, отголосок Словарь русских синонимов. резонанс см. отклик Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова. 2 … Словарь синонимов

Явление резонанса колебательных систем известно всем еще из школьного курса
по физике. Возьмем для примера два камертона. Возбудим один камертон на частоте в 500 Гц и поднесем его к другому камертону с такой же собственной частотой в 500 Гц. Что же произойдет? Он – зазвучит. С таким же успехом резонанс взаимодействия, может быть, применим и ко всему живому на Земле – это человек, животное, растительный мир.

Резона́нс (фр. resonance, от лат. resono - откликаюсь) - явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс - явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность. Явление резонанса впервые было описано Галилео Галилеем в 1602 г в работах, посвященных исследованию маятников и музыкальных струн.

(Материал из Википедии - свободной энциклопедии)

Резонанс — это основной способ передачи эмоций от человека к человеку.

Так описан резонанс в Википедии. Зачем эмпату или экстрасенсу знать о резонансе? Для экстрасенса, работающего с потоками энергии, чувствами, эмоциями, это явление можно использовать как инструмент. Резонанс — это физическое явление, и другие биоэнергетические проявления как, к примеру, на звук. Звук — это тоже своего рода поле, вернее его вибрация, она заполняет собой всё вокруг, куда сможет проникнуть. Чувства и эмоции — это обычное поле и подчиняются физическим законам.

К примеру, чтобы усилить чувство-эмоцию достаточно найти ещё одного человека с подобной эмоцией или возбудить её в другом человеке. Чем больше людей находятся вместе в одной эмоции, тем она становится сильней . Если наращивать количество людей с одной эмоцией, то она, в какой то момент поглотит личности людей, и люди теряют над собой контроль . Толпа болельщиков на стадионе, митинги, просто собрания единомышленников, религиозные служения — вот несколько примеров эффекта резонанса в эмоциональном плане.

Чем опасно телевидение в этом плане.

Выше я писал:- чем больше людей находятся вместе в одной эмоции, тем она становится сильней. А теперь представьте, идёт какая нибудь передача, или художественный фильм не оставляющие людей равнодушными. Это та же самая групповая медитация , то-есть имеет огромную силу влияющую на общее сознание людей города, страны, планеты. Всё зависит от того, сколько людей смотрит данный продукт. Если по телевидению осуждают кого то или что то не важно заслуженно или нет, и все телезрители испытывают негодование, то тому о ком идёт речь не будет ни чего хорошего.

Но если к примеру идёт художественный фильм, там чаще всего персонажи вымышленные, то-есть особо расстраиваться нечего, вреда ни кому нет. Но не так всё просто. Если человеком переживаются негативные эмоции, то он разрушает сам себя, а представьте что будет если учесть резонанс от всех телезрителей в этот момент. Для подобных вещей расстояние не помеха. Это получается групповая медитация на самоуничтожение. По этому если смотреть по телевидению передачи или фильмы, то только вызывающие позитив. Но и тут не всё просто, та энергия которая выделяется человеком, она не остаётся ему лично, она забирается определёнными эгрегорами.

Проведите эксперимент, или просто вспомните, если что то подобное в жизни с вами уже случалось. Посмотрите фильм по одному из центральных каналов, в пиковое время когда много людей смотрит телевизор а через какое то время посмотрите тот же фильм в интернете или просто с диска, так сказать в одиночестве и обратите внимание что эмоции когда вы смотрите в одиночестве с DVD гораздо мене яркие, чем при просмотре по центральному каналу телевидения когда одновременно с вами смотрят этот фильм тысячи человек.

Проявления резонанса в бытовом плане.

Если вы думаете, что в жизни вам может не встретиться резонанс, потому что вы не болельщик и вообще избегаете сборищ людей, вы ошибаетесь.

Несколько примеров.

  • Дружба. Друг, подруга — это резонанс уровня сознаний, интересов.
  • Любовь. Влюблённость — резонанс чувств, внешнего и внутреннего соответствия вашим идеалам обеих участников.
  • Влюблённость односторонняя безответная. Это тоже резонанс, но резонанс уже не с человеком, а с образом человека, созданным собственным умом . А объект влюблённости просто похож на образ, живущий в подсознании влюблённого.
  • Обсуждение. Резонанс совпавших взглядов, мнений на событие, вещь, человека.
  • Сочувствие, сострадание. Со-настройка с человеком, осознанное вхождение с человеком в резонанс . Это действие происходит намеренно или по привычке, на автомате, если на ваш взгляд эти проявления являются правильными.
  • Обида, злость. Это сильные эмоциональные взрывы. Большинство людей легко входят в эти эмоции, практически моментально, так как они для нашего низко-вибрационного мира являются обычными, естественными.
  • Страх. Групповой страх — это также любимое занятие многих людей. Серьёзность — это скрытое проявление страха, эта игра одна из любимых людьми.

У вас есть выбор — не резонировать.

Не резонировать — значит оставаться нейтральным по отношению к эмоции, мировоззрению, убеждению, разделяемой группой людей. Человек, понимающий и узнающий явление резонанса, может усилием воли или, используя выбор, не участвовать в резонансе. Для экстрасенсов и особенно для эмпатов это очень важное понимание. Да, усиленная эмоция, во много раз будет ослепительней, это неприятно, но, осознавая, что вы можете не резонировать, можно не терять разум. Просто относиться к резонирующим людям как к опьяненным. Сами понимаете, что опьяненный человек не совсем адекватен , нужно просто подождать, когда человек протрезвеет, и тогда он станет нормальным.

В энергетических практиках часто используют резонанс в групповых медитациях. Да, групповая медитация дает значительно больший эффект, чем медитация в одиночестве , при условии, что все участники примерно одного уровня и духовного настроя. Но нужно не забывать, что любое эмоциональное, энергетическое излучение, особенно сильное, резонансное включает закон кармического уравновешивания. Это может выглядеть как эмоциональный взрыв, чаще проявляется в негативных эмоциях у большинства участников групповой медитации. Обычно это происходит на следующий день, хотя может наступить и через несколько часов. Некоторые это явление называют чисткой. Но это всего-лишь плата за искажения, внесенные в пространство мироздания во время медитации. Чистка проходила во время медитации, за счёт усиления энергетических потоков.

«Механические колебания и волны» - Содержание. Свободные Вынужденные Автоколебания. Механические колебания. Законы отражения. Волны. Распространение колебаний от точки к точке (от частицы к частице) в пространстве с течением времени. Циклическая частота и период колебаний равны, соответственно: Материальная точка, закрепленная на абсолютно упругой пружине.

«Частота колебаний» - Что называется чистым тоном? Скорость звука. Чаще всего таким веществом оказывается воздух. Ультразвук применяется для обнаружения в литых деталях различных дефектов. Каждый из нас знаком с таким звуковым явлением, как эхо. Скорость звука зависит от свойств среды, в которой распространяется звук. Инфразвук.

«Свободные колебания» - Из закона Ома для участка цепи переменного тока: Магнитный поток Ф сквозь плоскость рамки: Уравнение изменения заряда q на обкладках конденсатора во времени: Затухающие электромагнитные колебания. Циклическая частота свободных электромагнитных колебаний в контуре: Свободные электромагнитные колебания.

«Механические колебания» - Механические колебания и волны. Длина волны (?) – расстояние между ближайшими частицами, колеблющимися в одинаковой фазе. Продольные. Вынужденные. График гармонических колебаний. Волны - распространение колебаний в пространстве с течением времени. Частота колебаний- число полных колебаний, совершаемых в единицу времени.

«Физика Колебания и волны» - Рис 53. Обобщение темы Литература для работы: 1.Физика-9 – учебник 2.Физика -8 .автор Громов 3. Физика, человек, окружающая среда. (приложение к учебнику). Изучив тему.Колевания и волны, ты должен... Колебания и волны. Знать: уравнение гармонического колебания и определения характеристик колебания: амплитуды, периода, частоты колебаний; определения механической, поперечной и продольной волн; характеристики волны: длину, скорость; примеры использования звуковых волн в технике.

«Гармонические колебания» - A1 – амплитуда 1-го колебания. Биения. Геометрическая и волновая оптика. Кузнецов Сергей Иванович доцент кафедры ОФ ЕНМФ ТПУ. (2.2.4). Рисунок 5. Амплитуда А результирующего колебания зависит от разности начальных фаз. Колебания в противофазе. (2.2.5). Графический; геометрический, с помощью вектора амплитуды (метод векторных диаграмм).

Всего в теме 14 презентаций

Марта 02 2016

Резонанс - это резкий рост амплитуды вынужденных колебаний, который наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами колебательной системы. Увеличение амплитуды происходит при совпадении внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи резонансных явлений можно выделить и/или усилить даже совсем слабые гармонические колебания. Резонанс - явление, заключающееся в том, что колебательная система оказывается особенно отзывчивой на воздействие определённой частоты вынуждающей силы.

В нашей жизни довольно много ситуаций, в которых проявляется резонанс. Например, если к струнному музыкальному инструменту поднести звенящий камертон, то акустическая волна, исходящая от камертона, вызовет вибрацию струны настроенной на частоту камертона, и она сама зазвучит.

Еще один пример, всем известный эксперимент с тонкостенным бокалом. Если измерить частоту звука, с которой звенит бокал, и, подать звук с такой же частотой от генератора частот, но с большей амплитудой, через усилитель и динамик обратно на бокал, его стенки входят в резонанс с частотой звука идущего от динамика и начинают вибрировать. Увеличение амплитуды этого звука до определенного уровня приводит к разрушению бокала.

Биорезонанс: с Древней Руси и до наших времен

Наши православные предки, ещё за десятки тысяч лет до прихода христианства на Русь хорошо знали о силе колокольного звона и старались в каждой деревне установить колокольню! Благодаря чему в средневековье Русь, богатая церковными колоколами, избегала опустошительных эпидемий чумы в отличии от Европы (Галлии), в которой святые инквизиторы на кострах сожгли не только всех учёных и ведающих, но и все древние «еретические» книги, написанные на глаголице, хранившие уникальные знания наших предков, в том числе и о силе резонанса!

Таким образом, все православные знания, накопленные веками, были запрещены, уничтожены и подменены новой христианской верой. При этом по сей день данные о биорезонансе находятся под запретом. Даже спустя века любая информация о методах лечения, не приносящих прибыль фармацевтической промышленности, умалчивается. В то время как ежегодный многомиллиардный оборот фармацевтики растет с каждым годом.

Яркий пример применения резонансных частот на Руси, и это факт, от которого нельзя отвертеться. Когда в Москве в 1771 году (1771 г.) вспыхнула эпидемия чумы, Екатерина II отправила из Петербурга графа Орлова с четырмя лейб-гвардиями и огромным штатом врачей. Вся жизнь в Москве была парализована. Дабы отогнать «моровые поветрия» миряне окуривали жилища, на улицах разводили огромные костры, и вся Москва была окутана черным дымом, так как тогда считалось, что чума распространяется по воздуху, но это мало помогало. А ещё изо всех сил били в набат (самый большой колокол) и во все колокола меньшего размера в течении 3-х дней подряд, так как свято верили, что колокольный звон отведёт от города страшную беду. Через несколько дней эпидемия стала отступать. «В чем секрет?» - спросите Вы. На самом деле ответ лежит на поверхности.

А теперь рассмотрим небезызвестный пример использования биорезонанса в наше время. С целью соблюдения чистоты эксперимента, медики в палату с онкологическими больными поставили металлические пластины, наподобие тех, что использовались в древних монастырях, чтобы колокола у пациентов не могли ассоциироваться с церковью, и, рождаемое поневоле самовнушение, не могло существенно повлиять на результаты исследований. При подборе индивидуальных частот для каждого больного использовалось множество титановых пластин различного размера. Итог превзошел все ожидания!

После воздействия акустических волн определённой частоты на биологически активные точки пациентов у 30% больных прекратился болевой синдром, и они смогли уснуть, а ещё у 30% больных прекратились боли, не снимавшиеся самыми сильными наркотическими анестетиками!

В настоящее время, для достижения эффекта резонанса нет необходимости использовать огромные колокола, а есть уникальная возможность, применять достижения науки и техники, созданные электронные приборы на основе частотного резонанса, иными словами приборы биорезонансной терапии Smart Life.

Эффект резонанса в биологических структурах можно вызвать при помощи:

Акустических волн

Механического воздействия

Электромагнитных волн видимого и радиочастотного диапазонов

Импульсов магнитного поля

Импульсов слабого электрического тока

Импульсного теплового воздействия

То есть, эффект резонанса в биологических структурах можно вызывать внешним воздействием и любыми физическими явлениями, возникающими в процессе биохимических реакций внутри живой клетки. Причём каждая биологическая структура имеет свой уникальный частотный спектр, сопровождающий биохимические процессы и откликается на внешнее воздействие, как основной резонансной частоты, так и высших или низших гармоник от основной частоты, с амплитудой во столько раз большей, на сколько эти гармоники отстоят от частоты основного резонанса.

Как в повседневной жизни можно использовать силу резонанса, и какой же метод воздействия выбрать?

Акустические волны

Угадайте, что происходит с зубным камнем во время его удаления, при помощи ультразвука в кабинете у стоматолога или при разрушении камней в почках? Ответ очевиден. И без сомнения, акустическое воздействие - это прекрасная возможность для исцеления организма, если бы не одно «но». Колокола много весят, дорого стоят, создают сильный шум, и могут использоваться исключительно стационарно.

Магнитное поле

Чтобы вызвать хотя бы сколь-нибудь ощутимый эффект от воздействия пульсирующего магнитного поля на всё тело, необходимо изготовить электромагнит огромных размеров и массой пару тонн, он будет занимать пол комнаты и потреблять очень много электроэнергии. Инертность системы не позволит использовать его на высоких частотах. Маленькие электромагниты можно использовать лишь локально из-за малого радиуса действия. Также нужно точно знать зоны на теле и частоту воздействия. Вывод неутешителен: использовать магнитное поле для терапии заболеваний экономически не целесообразно в домашних условиях.

Электрический ток Электромагнитные волны
Для метода частотного резонанса можно использовать радиоволны с несущей частотой от 10 кГц до 300 МГц, так как в этом диапазоне самый низкий коэффициент поглощения ЭМВ нашим телом и оно для них прозрачно, а также электромагнитные волны в видимом и инфракрасном спектре. Видимый красный свет с длиной волны от 630 нм до 700 нм проникает в ткани на глубину до 10 мм, а инфракрасный свет от 800 нм до 1000 нм проникает на глубину до 40 мм и глубже, вызывая ещё и некоторое тепловое воздействие при торможении в тканях. Для воздействия на биологически активные зоны на поверхности кожи, можно использовать радиоволны с несущей частотой до ~ 50 ГГц